CF388D. Fox and Perfect Sets 题意:求最大元素\(le n\)的线性空间的个数 给神题跪了 orz 容易想到 每个线性基对应唯一的线性空间,我们可以统计满足条件的对应空间不同的线性基个数 每一位我们插入一个向量,就获得了这一位的控制权,否则这一位是自由的 因为要\(le n\),可以使用数位DP 从高位到低位考虑,设当前第i位,已经插入了j个向量 没有天际线的限制 插入向量i的话,之前的向量位i必须是0,1种情况 不插入向量i的话,之前的向量位i可以任选,\(2^j\…
原文链接https://www.cnblogs.com/cly-none/p/9711279.html 题意:求有多少个非空集合\(S \subset N\)满足,\(\forall a,b \in S, a \bigotimes b \in S\),且\(S\)中的最大元素不超过\(n\).对\(10^9 + 7\)取模. \(n \leq 10^9\) 显然,每个合法的集合\(S\)都可以由一个线性基来生成.然而,一个集合可以有多个线性基.如果我们能让每个合法集合和每个符合某条件的线性基一一…
#include<bits/stdc++.h> using namespace std; #define fi first #define se second #define mp make_pair #define pb push_back #define rep(i, a, b) for(int i=(a); i<(b); i++) #define sz(x) (int)x.size() #define de(x) cout<< #x<<" = &q…
题目地址 一个整数perfect集合满足性质:集合中随意两个整数的异或和仍在这个集合中. 求最大数不超过K的perfect集合的个数. 每一个集合都是一个线性的向量空间. .能够通过全然的高斯消元得出该空间的基底..从高位到低位按基底DP. . DP[now][num][upper]表示K从左往右第now位空间向量个数为num且集合中最大值是否为K的前now位的基底个数... #include <algorithm> #include <cmath> #include <cs…
$ >Codeforces \space 388 D.  Fox and Perfect Sets<$ 题目大意 : 定义一个完美的集合 \(S\) ,当且仅当 \(S\) 非负非空,且 \(\forall a, b \in S, a\text{ xor } b \in S\) ,求集合内最大元素不超过 \(n\) 的完美集合数量 \(1 \leq n \leq 10^9\) 解题思路 : 一个完美的集合等价于某个线性基能表示出的所有元素,所以问题转化为对能表示的最大元素 \(\leq n\)…
BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include <cstdio> #include <cctype> #include <vector> #include <algorithm> #define BIT 30 #define gc() getchar() #define MAXIN 500000 //#define…
[题目分析] 神奇的题目,两人都可以第一次取走足够多堆的石子. nim游戏的规则是,如果异或和为0,那么就先手必输,否则先手有必胜策略. 所以只需要剩下一群异或和为0就可以了. 先排序,线性基扫一遍即可(保留最多的不为0的堆) [代码] #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <set> #include <map&g…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4184 本来想了可持久化trie,不过空间是 nlogn (出一个节点的时候把 tot 复原就能做到),时间是 nlog2n 的,不太可过. 查了查发现就是线性基.因为新增一些数的话,线性基只会变大,所以可以很方便地栈序撤销.不过这样时间是不是还是 nlog2n ? 现性基求最大值是看看异或上这个位上的数,答案能否变大.能的话就异或上. #include<cstdio> #include&…
题目链接 如果后手想要胜利,那么在后手第一次取完石子后 可以使石子数异或和为0.那所有数异或和为0的线性基长啥样呢,不知道.. 往前想,后手可以取走某些石子使得剩下石子异或和为0,那不就是存在异或和为0的子集吗. so先手要使得他取完后不存在异或和为0的子集.从大到小依次尝试插入线性基即可. //820kb 0ms #include <cstdio> #include <cctype> #include <algorithm> #define gc() getchar(…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2460 解法:从大到小排序,依次贪心的添加到当前集合就可以了,需要动态维护线性基.用拟阵证明,线性基性质,线性基中任意子集异或和不为0,所以从大到小加入就好. #include <bits/stdc++.h> using namespace std; typedef long long LL; struct node{ LL a, b; node(){} bool operator<…
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石.一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” .特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”.   后来,随着人们认知水平的提高,这个现象得到了很好的解释.经过了大量的实验后,著名法师 Dmit…
[JLOI2015]装备购买 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1820  Solved: 547[Submit][Status][Discuss] Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) 表示  (1 <= i <= n; 1 <= j <= m),每个装备需要花费 ci,现在脸哥想买一些装备,但是脸哥很穷,所以总是盘…
[题目分析] 腊鸡题目卡题面. 大概的意思就是给一张无向图,每次删掉其中一些边,问是否联通. 首先想到的是Bitset,可以做到n^2/64.显然过不了. 然而这是lyd在给我们讲线性基的时候的一道题目.↓ 首先构建dfs树. 发现图不联通的时候,当且仅当删去了树边和所有覆盖它的非树边. 所以对于每一条非树边随机一个权值,然后每条树边为所有覆盖它的非树边的权值的异或. 每次判断是否线性无关即可. 神题! [代码] #include <cstdio> #include <cstring&g…
这个输出可是有点恶心啊--WA*inf,最后抄了别人的输出方法orz 还有注意会爆long long,要开unsigned long long 对于k==1,单独考虑每一位i,如果这一位为1则有0.5的概率贡献1<<i,否则没有贡献,因为这一位选了奇数偶数个1的概率是一样的 对于k==2,考虑乘法的意义,也就是i位和j位同时为1的概率p,贡献(1<<(i+j))*p,这个p,如果全部的a[k]都是在i位和j为相同则是p=0.5(因为这样一来ij的值就关联了),否则p=0.25 对于…
思路: 最大: 所有线性基异或一下 次大: 最大的异或一下最小的线性基 搞定~ //By SiriusRen #include <cstdio> #include <algorithm> using namespace std; int n,flag=1,ans,a[100050]; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++)scanf("%d",&a[i]); f…
题目链接 题意 中文题意 思路 线性基学习 题目要求选价值最大的并且这些数异或后不为0,可以考虑线性基的性质:线性基的任意一个非空集合XOR之和不会为0.那么就可以贪心地对价值从大到小排序,加入线性基的数就加上它的价值,最终线性基里面的元素的价值就是最终答案. #include <bits/stdc++.h> using namespace std; typedef long long LL; typedef pair<int, int> pii; const int INF =…
传送门 解题思路 异或最大值肯定线性基了,树上两点那么就倍增搞一搞,就维护每个点到各级祖先的线性基,时间复杂度\(O(nlog^3n)\),并不知道咋过去的. 代码 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<cstdlib> #include<algorithm> using namespace std; typedef…
传送门 解题思路 首先构造出一个生成树,考虑不连接的情况.假设连通两点的非树边和树边都断掉后不连通,那么可以给所有的非树边随机一个互不相同的值,然后树边的权值为过他两端点的非树边权值的异或和,这个可以用一个类似树上差分的东西来实现.询问的时候把所有询问的边权加到线性基里,看是否某个数字能被线性表出. 代码 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #includ…
解题思路 \(nim\)游戏先手必胜的条件是异或和不为\(0\),也就是说第一个人拿走了若干堆后不管第二个人怎么拿都不能将剩余堆的异或和变成\(0\).考虑线性基,其实就是每个数对线性基都有贡献,任何一个数不会被线性表出,要使拿走元素最少,考虑贪心,将所有数字从大到小依次尝试插入线性基,插入失败就累计到答案. 代码 #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #i…
Codeforces 题目传送门 & 洛谷题目传送门 一道线性基的综合题 %%%%%% 首先注意到"非简单路径""异或和"等字眼,可以本能地想到线性基.根据线性基那一套理论,一个值 \(v\) 可以表示为某个 \(1\to 1\) 的非简单回路上边权的异或和当前节点它可以表示为 \(1\) 所在连通块的若干个 \(\ge 1\) 简单环上权值的异或和.其次我们还可以注意到本题至于很小,最高不过 \(2^5-1=31\),而稍微打个表即可发现大小为 \(5\)…
题目传送门 B. Perfect Number time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output We consider a positive integer perfect, if and only if the sum of its digits is exactly 1010. Given a positive integ…
链接:CF388D 题目大意 给定一个数\(n\),求选择\(0 \sim n\)中任意个数的数字组成的集合\(S\)中,有多少满足若\(a\in S,b\in S\),则\(a \bigoplus b \in S\),输出方案数对\(1e9+7\)取模. 题目分析 设\(f[i][j][k]\)表示从第\(i\)位到最高位,已经选了\(j\)个基,且由基\(\bigoplus\)得到的最大值与\(n\)的差值是否在\(2^i\)以内的方案数. 况一:当\(k=0\)(异或最大值\(+2^i<n…
题目 传送门:QWQ 分析 蒟蒻不会数位dp,又是现学的 用$ dp[i][j][k] $ 表示表示长度为i开头j的所有数字中k的个数 然后预处理出这个数组,再计算答案 代码 #include <bits/stdc++.h> using namespace std; typedef long long ll; ll dp[][][], ans[], b[], sum[]; int solve(ll x,ll d){ ; ll bef=x; ){ b[++len]=x%; } ;i<len…
题目链接:BZOJ - 1026 题目分析 这道题是一道数位DP的基础题,对于完全不会数位DP的我来说也是难题.. 对于询问 [a,b] 的区间的答案,我们对询问进行差分,求 [0,b] - [0,a-1] 的答案.这样就化繁为简了. 具体过程见代码中的注释. 代码 #include <iostream> #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath>…
BZOJ 洛谷 切了一道简单的数位DP,终于有些没白做题的感觉了...(然而mjt更强没做过这类的题也切了orz) 看部分分,如果\(k=0\),就是求\(\sum_{i=0}^n\sum_{j=0}^mi\ \mathbb{xor}\ j\).这个数据范围考虑数位DP.(其实统计一下\(\leq n\)和\(\leq m\)中每位为\(1\)的数有多少个就行了...) 如果你做过字节跳动冬令营网络赛 D.The Easiest One(没做过也行),就可以想到枚举每一位的时候,同时枚举\(x,…
BZOJ UOJ 感觉网上大部分题解对我这种数学基础差的人来说十分不友好...(虽然理解后也觉得没有那么难) 结合两篇写的比较好的详细写一写.如果有错要指出啊QAQ https://blog.csdn.net/smallsxj/article/details/73205569 https://www.cnblogs.com/wujiechao/p/7781140.html 首先题目要求输出精确的小数,由下面的推导可知答案要么是整数,要么是一位小数\(.5\),不会是\(.25,\ .125\)什…
题目传送门 这是个通往vjudge的虫洞 这是个通往bzoj的虫洞 题目大意 给定集合$S$,现在将任意$A\subseteq S$中的元素求异或和,然后存入一个数组中(下标从1开始),然后从小到大排一个序.问$q$第一次出现在$A$中的下标. 我们可以通过线性基得到值域上有多少个异或和比$q$小,现在问题来了,怎么求$q$的下标. 通过打表找规律,以及手动枚举可以发现一个结论. 定理1 设线性基为$B$,那么在$S$的子集的异或和中,出现的异或和的出现的次数是$2^{\left | S \ri…
题目传送门 这是个通往vjudge的虫洞 这是个通往bzoj的虫洞 题目大意 问点$1$到点$n$的最大异或路径. 因为重复走一条边后,它的贡献会被消去.所以这条路径中有贡献的边可以看成是一条$1$到$n$的简单路径加上若干个环. 因此可以找任意一条路径,然后找出所有环扔进线性基跑出最大异或和. 但是找出所有环可能会T掉,但是仔细画图发现,并不需要找出所有环,例如: 在上图中,你并不需找出所有的环,只用找出1 - 3 - 4 - 2和3 - 5 - 6 - 4这两个环,它们异或后就能得到环1 -…
[把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最高位的1在第x位. [就是原集合的任意子集的异或和 与 线性基的任意子集的异或和 完全相等] 2.线性基的构造法: 对每个数p从高位到低位扫,扫到第x位为1时,若ax不存在,则ax=p并结束此数的扫描,否则令p=p xor ax. [高斯消元] 异或版高斯消元后的线性基会变成类似上面的样子(线性基是…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方案数: 我们希望得到恰好有一个连通块的方案数,但这里不能直接 \( + t[1] - t[2] + t[3] - t[4] ... \),因为每个“恰好 \( i \) 个连通块”的情况并不是在各种 \( t[j] ( j<=i ) \) 中只被算了一次,而是因为标号,被算了 \( S(i,j) \…