1×1卷积,又称为Network in Network 如果卷积的输出输入都只是一个平面,那么1x1卷积核并没有什么意义,它是完全不考虑像素与周边其他像素关系. 但卷积的输出输入是长方体,所以1x1卷积实际上是对每个像素点,在不同的channels上进行线性组合(信息整合),且保留了图片的原有平面结构,调控depth,从而完成升维或降维的功能. 如下图所示,如果选择2个filters的1x1卷积层,那么数据就从原本的depth 3 降到了2.若用4个filters,则起到了升维的作用. 1. 相…