6-9 Haar+adaboost人脸识别】的更多相关文章

我们重点分析了Haar特征的概念以及如何计算Haar特征,并介绍了Haar+Adaboost分类器它们的组合以及Adaboost分类器如何使用和训练.这节课我们将通过代码来实现一下Haar+Adaboost分类器实现的人脸识别. 计算jpg图片的haar特征,不过这一步opencv已经帮我们做了,所以我们不需要.我们只需要对这个图片进行一个灰度处理,因为所有的haar特征必须要是基于灰度图片来进行计算的.第四步,我们进行检测.所以我们要检测出来当前的haar特征的人脸以及人脸上的眼睛.总共有两个…
原地址:http://blog.csdn.net/watkinsong/article/details/7631241 目前因为做人脸识别的一个小项目,用到了AdaBoost的人脸识别算法,因为在网上找到的所有的AdaBoost的简介都不是很清楚,让我看看头脑发昏,所以在这里打算花费比较长的时间做一个关于AdaBoost算法的详细总结.希望能对以后用AdaBoost的同学有所帮助.而且给出了关于AdaBoost实现的一些代码.因为会导致篇幅太长,所以这里把文章分开了,还请见谅. 第二部分的地址请…
上一篇文章中介绍了如何使用OpenCV自带的haar分类器进行人脸识别(点我打开). 这次我试着自己去训练一个haar分类器,前后花了两天,最后总算是训练完了.不过效果并不是特别理想,由于我是在自己的笔记本上进行训练,为减少训练时间我的样本量不是很大,最后也只是勉强看看效果了.网上有关的资料和博客可以说很多了,只要耐心点总是能成功的. 采集样本: 首先要训练,就得有训练集.网上有很多国外高校开源的库可供下载: 1.卡耐基梅隆大学图像数据库(点我打开) 2.MIT人脸数据库(点我打开) 3.ORL…
基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联: Haar分类器算法的要点例如以下: a)        使用Haar-like特征做检測. b)       使用积分图…
#include <opencv2/opencv.hpp> #include <cstdio> #include <cstdlib> #include <iostream> #include <Windows.h> using namespace std; int main() { // 加载Haar特征检测分类器 // haarcascade_frontalface_alt.xml系OpenCV自带的分类器 下面是我机器上的文件路径 const…
opencv中提供的基于haar特征级联进行人脸检测的方法效果非常不好,本文使用dlib中提供的人脸检测方法(使用HOG特征或卷积神经网方法),并使用提供的深度残差网络(ResNet)实现实时人脸识别,不过本文的目的不是构建深度残差网络,而是利用已经训练好的模型进行实时人脸识别,实时性要求一秒钟达到10帧以上的速率,并且保证不错的精度.opencv和dlib都是非常好用的计算机视觉库,特别是dlib,前面文章提到了其内部封装了一些比较新的深度学习方法,使用这些算法可以实现很多应用,比如人脸检测.…
首先给大家推荐一本书:机器学习算法原理与编程实践 本文内容全部转载于书中,相当于一个读书笔记了吧 绪论 1992年麻省理工学院通过实验对比了基于结构特征的方法与基于模版匹配的方法,发现模版匹配的方法要优于基于特征的方法. 以支持向量机为代表的统计学习理论在随后被应用到了人脸识别与确认中去.但是由于算法运行效率问题,很快被一种新的算法替代了.这就是2001年康柏研究院提出的基于简单矩形特征和AdaBoost的实时人脸检测系统.该方法的主要贡献包括: 1.可以快速计算简单矩形特征作为人脸图像特征 2…
在说到人脸检测我们首先会想到利用Harr特征提取和Adaboost分类器进行人脸检测(有兴趣的可以去一看这篇博客第九节.人脸检测之Haar分类器),其检测效果也是不错的,但是目前人脸检测的应用场景逐渐从室内演变到室外,从单一限定场景发展到广场.车站.地铁口等场景,人脸检测面临的要求越来越高,比如:人脸尺度多变.数量冗大.姿势多样包括俯拍人脸.戴帽子口罩等的遮挡.表情夸张.化妆伪装.光照条件恶劣.分辨率低甚至连肉眼都较难区分等.在这样复杂的环境下基于Haar特征的人脸检测表现的不尽人意.随着深度学…
前言 这是最后一篇介绍python在七牛云平台的应用了,因为-前两篇文章第一篇分享了怎么安装七牛的官方库以及怎么对自己的空间进行下载上传,删除等行动.而第二篇则分享了怎么利用七牛的API接口,由于七牛的接口方式几乎差不多,所以不再对七牛的各个SDK进行测试了,像是物体识别,格式转换等等很实用的功能.有兴趣的朋友可以分享下自己的经验.而这最后一篇介绍七牛主要是来讲述怎么用urlbase64编码链接.以及怎么得到一些API回传的JSON格式的数据.这样几乎七牛的所有API都可以使用了. 背景介绍 当…
Python的开源人脸识别库:离线识别率高达99.38%   github源码:https://github.com/ageitgey/face_recognition#face-recognition 以往的人脸识别主要是包括人脸图像采集.人脸识别预处理.身份确认.身份查找等技术和系统.现在人脸识别已经慢慢延伸到了ADAS中的驾驶员检测.行人跟踪.甚至到了动态物体的跟踪.由此可以看出,人脸识别系统已经由简单的图像处理发展到了视频实时处理.而且算法已经由以前的Adaboots.PCA等传统的统计…