在文本挖掘中,主题模型是比较特殊的一块,它的思想不同于我们常用的机器学习算法,因此这里我们需要专门来总结文本主题模型的算法.本文关注于潜在语义索引算法(LSI)的原理. 1. 文本主题模型的问题特点 在数据分析中,我们经常会进行非监督学习的聚类算法,它可以对我们的特征数据进行非监督的聚类.而主题模型也是非监督的算法,目的是得到文本按照主题的概率分布.从这个方面来说,主题模型和普通的聚类算法非常的类似.但是两者其实还是有区别的. 聚类算法关注于从样本特征的相似度方面将数据聚类.比如通过数据样本之间…