【Validation】林轩田机器学习基石】的更多相关文章

(转载)林轩田机器学习基石课程学习笔记1 - The Learning Problem When Can Machine Learn? Why Can Machine Learn? How Can Machine Learn? How Can Machine Learn Better? 每个部分由四节课组成,总共有16节课.那么,从这篇开始,我们将连续对这门课做课程笔记,共16篇,希望能对正在看这们课的童鞋有所帮助.下面开始第一节课的笔记:The Learning Problem. 一.What…
这一节主要讲如何通过数据来合理的验证模型好不好. 首先,否定了Ein来选模型和Etest来选模型. (1)模型越复杂,Ein肯定越好:但是Eout就不一定了(见上一节的overfitting等) (2)Etest是偷窥训练集,也没有效果 下面,集中讨论已有的数据集切分成train data和test data,怎么切分,怎么验证最合理. Model Selection的流程如下: (1)切分数据,选一个Eval最小的 (2)再用全量数据去训练选出来的那个model 流程搞清楚了,接下来就要看怎么…
首先回顾上节课末尾引出来的VC Bound概念,对于机器学习来说,VC dimension理论到底有啥用. 三点: 1. 如果有Break Point证明是一个好的假设集合 2. 如果N足够大,那么Ein跟Eout的表现会比较接近 3. 如果算法A选的g足够好(Ein很小),则可能从数据中学到了东西 ================================================== 现在正式引出VC Dimension的概念:啥叫VC Dimension: VC Dimensi…
首先明确了什么是Overfitting 随后,用开车的例子给出了Overfitting的出现原因 出现原因有三个: (1)dvc太高,模型过于复杂(开车开太快) (2)data中噪声太大(路面太颠簸) (3)数据量N太小(知道的路线太少) 这里(1)是前提,模型太复杂: (1)模型越复杂,就会捕获train data中越多的点(这当中当然包括更多的噪声点) (2)数据量N太小,根据VC Dimension理论,Eout会增大 这里的noise包括两类: 1. stochoastic noise:…
这里提出Logistic Regression的角度是Soft Binary Classification.输出限定在0~1之间,用于表示可能发生positive的概率. 具体的做法是在Linear Regression的基础上,再加一层Logistic Function,限定住输出的取值. 完成了hypothesis的部分,下面就是如何写出Ein的表达式了. 这里自己先回想了一下Linear Regression的情况,为啥能得到analytic close solution呢? 因为Line…
这一节开始讲基础的Linear Regression算法. (1)Linear Regression的假设空间变成了实数域 (2)Linear Regression的目标是找到使得残差更小的分割线(超平面) 下面进入核心环节:Linear Regression的优化目标是minimize Ein(W) 为了表达简便,首先需要把这种带Σ符号的转换成matrix form,如下: 1~2:多个项的平方和可以转换成向量的平方 2~3:把每个列向量x都横过来,组成一个新的X矩阵 最后转换成了最终的min…
紧接上一讲的Break Point of H.有一个非常intuition的结论,如果break point在k取到了,那么k+1, k+2,... 都是break point. 那么除此之外,我们还能获得那些讯息? 这里举了一些例子,核心就是说下面的事情 简言之,如果H有Break Point k,那么当N大于k的时候,mH(N)会大大地缩减(对于binary classification来说是pow(2, N) ). 按照这个思路,自然就想知道,既然mH(N)会大大缩减,能缩减到啥程度?(如…
接着上一讲留下的关子,机器学习是否可行与假设集合H的数量M的关系. 机器学习是否可行的两个关键点: 1. Ein(g)是否足够小(在训练集上的表现是否出色) 2. Eout(g)是否与Ein(g)足够接近(在训练集上的表现能否迁移到测试集上) (1)如果假设集合数量小(M小),可知union bound后,Ein与Eout是接近的:但由于可选择的假设集合少,Ein(g)效果可能不佳: (2)如果假设集合数量大(M大),有可能Ein(g)会获得更多的选择,测试集上效果更好:但由于M数量过大,训练集…
这一节的核心内容在于如何由hoeffding不等式 关联到机器学习的可行性. 这个PAC很形象又准确,描述了“当前的可能性大概是正确的”,即某个概率的上届. hoeffding在机器学习上的关联就是: 如果样本数量足够大,那么在训练集上获得的学习效果是可以平移到测试集上的.即如下, 这里保证的仅仅是“训练集的效果平移到测试集”,平移的仅仅是效果,没说效果好坏:如果训练效果是垃圾的,那么测试效果也基本是垃圾的. 如果假设空间是有限的,那么结果又如何呢?如下, 如果假设空间是有限的,根据公式推导:当…
直接跳过第一讲.从第二讲Perceptron开始,记录这一讲中几个印象深的点: 1. 之前自己的直觉一直对这种图理解的不好,老按照x.y去理解. a) 这种图的每个坐标代表的是features:features的值是有物理意义的. b) 而圈圈和叉叉是为了标注不同的样本(正样本 负样本),即label:为了后续的很多简便表示,这里正样本取+1,负样本取-1 2. Perceptron Learning策略的几何意义:表示临界线(面)的法向量旋转方向 由于label设为了+1和-1,可以直接用w+…