机器学习 Support Vector Machines 2】的更多相关文章

引言 这一讲及接下来的几讲,我们要介绍supervised learning 算法中最好的算法之一:Support Vector Machines (SVM,支持向量机).为了介绍支持向量机,我们先讨论"边界"的概念,接下来,我们将讨论优化的边界分类器,并将引出拉格朗日数乘法.我们还会给出 kernel function 的概念,利用 kernel function,可以有效地处理高维(甚至无限维数)的特征向量,最后,我们会介绍SMO算法,该算法说明了如何高效地实现SVM. Margi…
Optimal margin classifiers 前面我们讲过,对如下的原始的优化问题我们希望找到一个优化的边界分类器. minγ,w,bs.t.12∥w∥2y(i)(wTx(i)+b)⩾1,i=1,...m 我们可以将约束条件改写成如下: gi(w)=−y(i)(wTx(i)+b)+1⩽0 对于每一个训练样本,我们都有这样一个约束条件,而且从KKT条件我们知道,只有当训练样本的函数边界为1时,该训练样本的αi>0,我们看如下的一张图,其中的实线表示最大的边界分界线. 从图上可以看出,离分界…
优化的边界分类器 上一讲里我们介绍了函数边界和几何边界的概念,给定一组训练样本,如果能够找到一条决策边界,能够使得几何边界尽可能地大,这将使分类器可以很可靠地预测训练样本,特别地,这可以让分类器用一个"间隔"将正负样本分开. 现在,我们假设给定的一组训练样本是线性可分的,即有可能找到这样一条分界面,将正负样本分开.如何找到这样一个分界面可以使得几何边界最大?我们将这个优化问题用如下的表达式给出: maxγ,w,bs.t.γy(i)(wTx(i)+b)⩾γ,i=1,...m∥w∥=1 我…
7 Support Vector Machines7.1 Large Margin Classification7.1.1 Optimization Objective支持向量机(SVM)代价函数在数学上的定义. 复习一下S型逻辑函数: 那么如何由逻辑回归代价函数得到支持向量机的代价函数(对于一个示例): 其实就是将逻辑回归的代价函数中的log(1/(1+e^(-ΘTx)))和log(1-1/(1+e^(-ΘTx)))分别替换为cost1(ΘTx)和cost0(ΘTx)(cost0和cost1分…
Lecture 12 支持向量机 Support Vector Machines 12.1 优化目标 Optimization Objective 支持向量机(Support Vector Machine) 是一个更加强大的算法,广泛应用于工业界和学术界.与逻辑回归和神经网络相比, SVM在学习复杂的非线性方程时提供了一种更为清晰,更加强大的方式.我们通过回顾逻辑回归,一步步将其修改为SVM. 首先回顾一下逻辑回归: 其 cost function 公式如下(这里稍微有点变化,将负号移到了括号内…
作业: machine-learning-ex6 1. 支持向量机(Support Vector Machines) 在这节,我们将使用支持向量机来处理二维数据.通过实验将会帮助我们获得一个直观感受SVM是怎样工作的.以及如何使用高斯核(Gaussian kernel ).下一节我们将使用SVM建立一个垃圾邮件分类器. 1.1 样本数据1 以二维线性可分数据开始.下面代码部分将会可视化此数据集如图1所示.在这个数据集中,正样本使签为1使用+表示,负样本标签为0使用o表示,由一条间隙隔开.注意有一…
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 a cleverly-chosen optimization objective优化目标, one of the most widely used learning algorithms today. 第一节 向量的内积(SVM的基本数学知识) Support Vector Machines 支持向…
Support Vector Machines 引言 内核方法是模式分析中非常有用的算法,其中最著名的一个是支持向量机SVM 工程师在于合理使用你所拥有的toolkit 相关代码 sklearn-SVM 本文要点 1.Please explain Support Vector Machines (SVM) like I am a 5 year old - Feynman Technique 2.kernel trick 一.术语解释 1.1 what is support vector? 从名词…
支持向量机(Support Vector Machines) 优化目标(Optimization Objective) 到目前为止,你已经见过一系列不同的学习算法.在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用算法 A 还是算法 B ,其实一个算法的表现通常依赖于你的水平.例如:你为算法所设计或选择的特征.正则化参数的选取.学习曲线.误差分析.算法评估,等等诸如此类的细节决定了一个算法的性能. 在机器学习领域中,还有一个更加强大的监督学习算法被广泛地应用于工业界和学术界…
Support Vector Machines for classification To whet your appetite for support vector machines, here’s a quote from machine learning researcher Andrew Ng: “SVMs are among the best (and many believe are indeed the best) ‘off-the-shelf’ supervised learni…