编程即是编制对数据进行运算的过程.特殊的运算必须用特定的数据结构来支持有效运算.如果没有数据结构的支持,我们就只能为每条数据申明一个内存地址了,然后使用这些地址来操作这些数据,也就是我们熟悉的申明变量再对变量进行读写这个过程了.试想想如果没有数据结构,那我们要申明多少个变量呢.所以说,数据结构是任何编程不可缺少的元素. 泛函编程使用泛函数据结构(Functional Data Structure)来支持泛函程序.泛函数据结构的特点是”不可变特性“(Immutability), 是泛函编程中函数组…
上两期我们讨论了Monad.我们说Monad是个最有概括性(抽象性)的泛函数据类型,它可以覆盖绝大多数数据类型.任何数据类型只要能实现flatMap+unit这组Monad最基本组件函数就可以变成Monad实例,就可以使用Monad组件库像for-comprehension这样特殊的.Monad具备的泛函式数据结构内部的按序计算运行流程.针对不同的数据类型,flatMap+unit组件实现方式会有所不同,这是因为flatMap+unit代表着承载数据类型特别的计算行为.之前我们尝试了List,O…
经过了一段时间的泛函编程讨论,始终没能实实在在的明确到底泛函编程有什么区别和特点:我是指在现实编程的情况下所谓的泛函编程到底如何特别.我们已经习惯了传统的行令式编程(imperative programming),总是先入为主的认为软件编程就是一行接着一行的更改某些变量状态指令:明刀明枪,字里行间目的和方式都很明确.我们就以一步步更改程序状态的方式,一行一行的拼凑指令:这就是典型的行令式编程了. 泛函编程,顾名思义,就是用一个个函数来编程.讲的再深入点就是通过函数组合来更改程序状态.什么意思?为…
在上一节我们介绍了Monad.我们知道Monad是一个高度概括的抽象模型.好像创造Monad的目的是为了抽取各种数据类型的共性组件函数汇集成一套组件库从而避免重复编码.这些能对什么是Monad提供一个明确的答案吗?我们先从上节设计的Monad组件库中的一些基本函数来加深一点对Monad的了解: trait Monad[M[_]] extends Functor[M] { def unit[A](a: A): M[A] def flatMap[A,B](ma: M[A])(f: A => M[B]…
简单来说:Monad就是泛函编程中最概括通用的数据模型(高阶数据类型).它不但涵盖了所有基础类型(primitive types)的泛函行为及操作,而且任何高阶类或者自定义类一旦具备Monad特性就可以与任何类型的Monad实例一样在泛函编程中共同提供一套通用的泛函编程方式.所以有人把泛函编程视作Monadic Programming也不为过之.那么,具体什么是Monad呢? 在前面我们讨论过Monoid,我们说过它是一个特殊的范畴(Category),所有数据类型的Monoid实例都共同拥有一…
泛函编程(23)-泛函数据类型-Monad http://www.cnblogs.com/tiger-xc/p/4461807.html https://blog.csdn.net/samsai100/article/details/71512702…
经过了一段时间的学习,我们了解了一系列泛函数据类型.我们知道,在所有编程语言中,数据类型是支持软件编程的基础.同样,泛函数据类型Foldable,Monoid,Functor,Applicative,Traversable,Monad也是我们将来进入实际泛函编程的必需.在前面对这些数据类型的探讨中我们发现: 1.Monoid的主要用途是在进行折叠(Foldable)算法时对可折叠结构内元素进行函数施用(function application). 2.Functor可以对任何高阶数据类型F[_]…
泛函编程的核心模式就是函数组合(compositionality).实现函数组合的必要条件之一就是参与组合的各方程序都必须是纯代码的(pure code).所谓纯代码就是程序中的所有表达式都必须是Referentially Transparent(RT,等量可替换的),它的意思是:在一段程序p中,所有的表达式e都可以用e的运算结果替代而不影响到p的运算结果,那么e就是RT等量可替换的,也就是说程序p是由纯代码组成的.但如果程序p中包含了一些变量,这些变量的状态就会影响到程序中e的运算结果,那么p…
由于泛函编程非常重视函数组合(function composition),任何带有副作用(side effect)的函数都无法实现函数组合,所以必须把包含外界影响(effectful)副作用不纯代码(impure code)函数中的纯代码部分(pure code)抽离出来形成独立的另一个纯函数.我们通过代码抽离把不纯代码逐步抽离向外推并在程序里形成一个纯代码核心(pure core).这样我们就可以顺利地在这个纯代码核心中实现函数组合.IO Monad就是泛函编程处理副作用代码的一种手段.我们先…
在上节我们介绍了Trampoline.它主要是为了解决堆栈溢出(StackOverflow)错误而设计的.Trampoline类型是一种数据结构,它的设计思路是以heap换stack:对应传统递归算法运行时在堆栈上寄存程序状态,用Trampoline进行递归算法时程序状态是保存在Trampoline的数据结构里的.数据结构是在heap上的,所以可以实现以heap换stack的效果.这种以数据结构代替函数调用来解决问题的方式又为泛函编程提供了更广阔的发展空间. 我们知道,任何涉及IO的运算都会面临…
Monoid是数学范畴理论(category theory)中的一个特殊范畴(category).不过我并没有打算花时间从范畴理论的角度去介绍Monoid,而是希望从一个程序员的角度去分析Monoid以及它在泛函编程里的作用.从这个思路出发我们很自然得出Monoid就是一种数据类型,或者是一种在泛函编程过程中经常会遇到的数据类型:当我们针对List或者loop进行一个数值的积累操作时我们就会使用到Monoid.实际上Monoid就是List[A] => A的抽象模型.好了,我们就不要越描越黑了吧…
List是一种最普通的泛函数据结构,比较直观,有良好的示范基础.List就像一个管子,里面可以装载一长条任何类型的东西.如需要对管子里的东西进行处理,则必须在管子内按直线顺序一个一个的来,这符合泛函编程的风格.与其它的泛函数据结构设计思路一样,设计List时先考虑List的两种状态:空或不为空两种类型.这两种类型可以用case class 来表现: trait List[+A] {} case class Cons[+A](head: A, tail: List[A]) extends List…
上期我们讨论了IO处理过程:Process[I,O].我们说Process就像电视信号盒子一样有输入端和输出端两头.Process之间可以用一个Process的输出端与另一个Process的输入端连接起来形成一串具备多项数据处理功能的完整IO过程.但合成的IO过程两头输入端则需要接到一个数据源,而另外一端则可能会接到一个数据接收设备如文件.显示屏等.我们在这篇简单地先介绍一下IO数据源Source和IO数据接收端Sink. 我们先用一个独立的数据类型来代表数据源Source进行简单的示范说明,这…
泛函编程方式其中一个特点就是普遍地使用递归算法,而且有些地方还无法避免使用递归算法.比如说flatMap就是一种推进式的递归算法,没了它就无法使用for-comprehension,那么泛函编程也就无法被称为Monadic Programming了.虽然递归算法能使代码更简洁易明,但同时又以占用堆栈(stack)方式运作.堆栈是软件程序有限资源,所以在使用递归算法对大型数据源进行运算时系统往往会出现StackOverflow错误.如果不想办法解决递归算法带来的StackOverflow问题,泛函…
对OOP编程人员来说,泛函状态State是一种全新的数据类型.我们在上节做了些介绍,在这节我们讨论一下State类型的应用:用一个具体的例子来示范如何使用State类型.以下是这个例子的具体描述: 模拟一个自动糖果贩售机逻辑:贩售机有两种操作方法:投入硬币和扭动出糖旋钮.贩售机可以处于锁定和放开两种状态.模拟运作跟踪贩售机内当前的糖果和硬币数量.贩售机的操作逻辑要求如下: 1.如果机内有糖的话,投入硬币贩售机从锁定状态进入放开状态 2.在放开状态下扭动旋钮贩售机放出一块糖果后自动进入锁定状态 3…
Option是一种新的数据类型.形象的来描述:Option就是一种特殊的List,都是把数据放在一个管子里:然后在管子内部对数据进行各种操作.所以Option的数据操作与List很相似.不同的是Option的管子内最多只能存放一个元素,在这个方面Option的数据操作就比List简单的多,因为使用者不必理会数据元素的位置.顺序.Option只有两种状态:包含一个任何类型的元素或者为空.或者这样讲:一个Option实例包含 0 或 1 个元素:None代表为空,Some(x)代表包含一个任意类型的…
我们经常提到函数式编程就是F[T].这个F可以被视为一种运算模式.我们是在F运算模式的壳子内对T进行计算.理论上来讲,函数式程序的运行状态也应该是在这个运算模式壳子内的,也是在F[]内更新的.那么我们就应该像函数式运算T值一样,也有一套函数式更新程序状态的方法.之前我们介绍了Writer Monad.Writer也是在F[]内维护Log的,可以说是一种状态维护方式.但Writer的Log是一种Monoid类型,只支持Semigroup的a|+|b操作,所以只能实现一种两段Log相加累积这种效果.…
在前面的几节讨论里我们终于得出了一个概括又通用的IO Process类型Process[F[_],O].这个类型同时可以代表数据源(Source)和数据终端(Sink).在这节讨论里我们将针对Process[F,O]的特性通过一些应用实例来示范它的组合性(composibility)和由数据源到接收终端IO全过程的功能完整性. 我们已经在前面的讨论中对IO Process的各种函数组合进行了调研和尝试,现在我们先探讨一下数据源设计方案:为了实现资源使用的安全性和IO程序的可组合性,我们必须保证无…
IO处理可以说是计算机技术的核心.不是吗?使用计算机的目的就是希望它对输入数据进行运算后向我们输出计算结果.所谓Stream IO简单来说就是对一串按序相同类型的输入数据进行处理后输出计算结果.输入数据源可能是一串键盘字符.鼠标位置坐标.文件字符行.数据库纪录等.如何实现泛函模式的Stream IO处理则是泛函编程不可或缺的技术. 首先,我们先看一段较熟悉的IO程序: import java.io._ def linesGt4k(fileName: String): IO[Boolean] =…
既然是泛函编程,多了解一下函数自然是免不了的了: 方法(Method)不等于函数(Function) 方法不是函数但可以转化成函数:可以手工转换或者由编译器(compiler)在适当的情况下自动转换.反向转换则不然:函数是无法转换到方法的.先看看下面的例子: scala> def aMethod(x: Int): Int = x + 10 aMethod: (x: Int)Int scala> val aFunction = (x: Int) => x + 10 aFunction: I…
确切来说应该是我打算怎么去学习Scala泛函编程.在网上找不到系统化完整的Scala泛函编程学习资料,只好把能找到的一些书籍.博客.演讲稿.论坛问答.技术说明等组织一下,希望能达到学习目的.关于Scala语言的教材在国内网上还是比较容易找到的:可以到Scala语言官方网站,国内Scala社区网站这些地方去看看了解一下:深一点的参考一下在路上,里面包括了一些泛函编程的概念性内容. 学习编程语言除了语法语意之外还必须透彻了解编程语言的数据结构(data structure):数据结构在实际项目中的角…
既然谈到实用编程,就应该不单止了解试试一个新的编程语言那么简单了,最好通过实际的开发项目实例来演示如何编程.心目中已经有了一些设想:想用Scala泛函编程搞一个开源的数据平台应用系统,也就是在云平台PaaS层对上一层后台的数据应用平台.想想当电子商务和云应用真正普及后将会出现一大批没有云应用软件开发能力的用户.将来真正的云服务提供商,单提供虚拟机租赁服务是远不足够的,如果能提供一个具备计算资源自动扩展收缩.支持多种数据库以及一套简单的后台系统配置脚本语言(DSL:Domain Specific…
现在计算机技术发展现象是:无论硬件技术如何发展都满足不了软件需求:无论处理器变得能跑多快,都无法满足软件对计算能力的需要.按照摩尔定律(Moore's Law)处理器(CPU)每平方面积上包含的半导体晶体管数量每18个月将会增加一倍.发展到现在,所有CPU厂商都再也无法按照摩尔定律在一定面积上成倍增加半导体了,大家也都只能朝着增加CPU内核数量上努力了.多核CPU已然成为现代计算机技术发展趋势.现代软件对计算能力的需求暴增主要归咎于现代社会中数据应用的普及和泛滥.这种数据量级单凭增加处理器和存储…
上两节我们建了一个并行运算组件库,实现了一些基本的并行运算功能.到现在这个阶段,编写并行运算函数已经可以和数学代数解题相近了:我们了解了问题需求,然后从类型匹配入手逐步产生题解.下面我们再多做几个练习吧. 在上节我们介绍了asyncF,它的类型款式是这样的:asyncF(f: A => B): A => Par[B],从类型款式(type signature)分析,asyncF函数的功能是把一个普通的函数 A => B转成A => Par[B],Par[B]是一个并行运算.也就是说…
虽然明白泛函编程风格中最重要的就是对一个管子里的元素进行操作.这个管子就是这么一个东西:F[A],我们说F是一个针对元素A的高阶类型,其实F就是一个装载A类型元素的管子,A类型是相对低阶,或者说是基础的类型.泛函编程风格就是在F内部用对付A类的函数对里面的元素进行操作.但在之前现实编程中确总是没能真正体会这种编程模式畅顺的用法:到底应该在哪里用?怎么用?可能内心里还是没能摆脱OOP的思维方式吧.在前面Stream设计章节里,我们采用了封装形式的数据结构设计,把数据结构uncons放进了特质申明里…
延后计算(lazy evaluation)是指将一个表达式的值计算向后拖延直到这个表达式真正被使用的时候.在讨论lazy-evaluation之前,先对泛函编程中比较特别的一个语言属性”计算时机“(strict-ness)做些介绍.strict-ness是指系统对一个表达式计算值的时间点模式:即时计算的(strict),或者延后计算的(non-strict or lazy).non-strict或者lazy的意思是在使用一个表达式时才对它进行计值.用个简单直观的例子说明吧: def lazyFu…
上节介绍了泛函数据结构List及相关的泛函编程函数设计使用,还附带了少许多态类型(Polymorphic Type)及变形(Type Variance)的介绍.有关Polymorphism的详细介绍会放在typeclass讨论中.为了更多了解泛函数据结构(Functional Data Structure),想在这个章节把另一个我们熟悉的数据结构-Tree做些简单介绍. Tree的状态不是枝(Branch)就是叶(Leaf),这个很容易理解.那么就按照上节设计List那样设计Tree类型: tr…
折叠算法是List的典型算法.通过折叠算法可以实现众多函数组合(function composition).所以折叠算法也是泛函编程里的基本组件(function combinator).了解折叠算法的原理对了解泛函组合有着至关紧要的帮助.折叠算法又可分右折叠和左折叠.我们先从右折叠(foldRight)开始: 从以上两图示可以得出对List(a,b,c)的右折叠算法:op(a,op(b,op(c,z))) 可以看出括号是从右开始的.计算方式如图二:op(a,sub), sub是重复子树,可以肯…
1.泛型编程(C++模板) 其中,Ada, Delpha, Java, C#, Swift 称之为 泛型/generics; ML, Scala和 Haskell 称之为 参数多态/parametric polymorphism; C++和D语言称之为 模板/template. <设计模式/Design Patterns>称之为 参数化类型/parameterized type. 因为在这里,参数的类型在一般情况下都是未知的,而泛型编程可以支持多种类型,所以叫泛/generic. ①函数模板/…
前面我们讨论了Applicative.Applicative 就是某种Functor,因为我们可以用map2来实现map,所以Applicative可以map,就是Functor,叫做Applicative Functor.我们又说所有Monad都是Applicative,因为我们可以用flatMap来实现map2,但不是所有数据类型的flatMap都可以用map2实现,所以反之不是所有Applicative都是Monad.Applicative注重于各种类型的函数施用,也就是map.包括普通函…