MCMC: The Metropolis Sampler】的更多相关文章

本文主要译自 MCMC: The Metropolis Sampler 正如之前的文章讨论的,我们可以用一个马尔可夫链来对目标分布 \(p(x)\) 进行采样,通常情况下对于很多分布 \(p(x)\),我们无法直接进行采样.为了实现这样的目的,我们需要为马尔可夫链设计一个状态转移算子(transition operator),是的这个马尔可夫链的稳态分布与目标分布吻合.Metropolis 采样算法(更通常的是 Metropolis-Hastings 采样算法)采用简单的启发式方法实现了这样的状…
本文主要译自:MCMC:The Metropolis-Hastings Sampler 上一篇文章中,我们讨论了Metropolis 采样算法是如何利用马尔可夫链从一个复杂的,或未归一化的目标概率分布进行采样的.Metropolis 算法首先在马尔可夫链中基于上一个个状态 \(x^{(t-1)}\) 推荐一个新的状态 \(x^*\),这个新状态是根部建议分布 \(q(x^*|x^{(t-1)})\) 进行采样得到的.算法基于目标分布函数在 \(x^*\) 上的取值接受或者拒绝 \(x^*\).…
MCMC: The Gibbs Sampler 多元高斯分布的边缘概率和条件概率 Marginal and conditional distributions of multivariate normal distribution clear, clc rng('default') num_samples = 5000; num_dims = 2; mu = [0, 0]; rho(1) = .8; rho(2) = .8; prop_sigma = 1; minn = [-3, -3]; ma…
本文译自A Brief Introduction to Markovs Chains 译者按: 前面一篇文章讲的是蒙特卡洛积分,也就是通过生成符合特定分布的随机变量来近似计算积分值,例如: \(E = \int f(x)p(x)dx\) 上面的式子可以理解成求函数 \(f(x)\) 的期望,因此根据大数定理,我们生成符合 \(p(x)\) 分布的 N 个随机变量,然后用: \(E(f(x))=\frac{\sum\limits_{n=1}^N f(x_n)}{N}\) 来近似计算函数的期望,也就…
从随机过程到马尔科夫链蒙特卡洛方法 1. Introduction 第一次接触到 Markov Chain Monte Carlo (MCMC) 是在 theano 的 deep learning tutorial 里面讲解到的 RBM 用到了 Gibbs sampling,当时因为要赶着做项目,虽然一头雾水,但是也没没有时间仔细看.趁目前比较清闲,把 machine learning 里面的 sampling methods 理一理,发现内容还真不少,有些知识本人也是一知半解,所以这篇博客不可…
贝叶斯集锦(3):从MC.MC到MCMC 2013-07-31 23:03:39 #####一份草稿 贝叶斯计算基础 一.从MC.MC到MCMC 斯坦福统计学教授Persi Diaconis是一位传奇式的人物.Diaconis14岁就成了一名魔术师,为了看懂数学家Feller的概率论著作,24岁时进入大学读书.他向<科学美国人>投稿介绍他的洗牌方法,在<科学美国人>上常年开设数学游戏专栏的著名数学科普作家马丁•加德纳给他写了推荐信去哈佛大学,当时哈佛的统计学家Mosteller 正…
Metropolis Hasting Algorithm: MH算法也是一种基于模拟的MCMC技术,一个非常重要的应用是从给定的概率分布中抽样.主要原理是构造了一个精妙的Markov链,使得该链的稳态 是你给定的概率密度.它的优点,不用多说,自然是能够对付数学形式复杂的概率密度.有人说,单维的MH算法配上Gibbs Sampler差点儿是“无敌”了. 今天试验的过程中发现,MH算法想用好也还不简单,里面的转移參数设定就不是非常好弄.即使用最简单的高斯漂移项,方差的确定也是个头疼的问题,须要不同问…
M-H是Metropolis抽样方法的扩展,扩展后可以支持不对称的提议分布. 对于M-H而言,根据候选分布g的不同选择,衍生出了集中不同的变种: (1)Metropolis抽样方法 (2)随机游动Metropolis (3)独立抽样方法 <---- 本章涉及的方法 (4)逐分量的M-H抽样方法 独立抽样方法是M-H的一个特殊形式.因为独立,所以提议分布去掉了先验的影响. [Bayes] Metropolis-Hastings Algorithm 中可见的例如下图,是否可以用于预测参? 在此用于预…
Note of Markov Chain Monte Carlo and Gibbs Sampling :  http://pan.baidu.com/s/1jHpWY1o 序:A major limitation towards more widespread implementation of Bayesian approaches is that obtaining thee posterior distribution often requires the integration of…
蒙特卡洛马尔科夫链(MCMC) 标签: 机器学习重要性采样MCMC蒙特卡洛 2016-12-30 20:34 3299人阅读 评论(0) 收藏 举报  分类: 数据挖掘与机器学习(41)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   在以贝叶斯方法为基础的机器学习技术中,通常需要计算后验概率,然后通过最大后验概率(MAP)等方法进行参数推断和决策.然而,在很多时候,后验分布的形式可能非常复杂,这个时候寻找其中的最大后验估计或者对后验概率进行积分等计算往往非常困…