DP/整数拆分 整个映射关系可以分解成几个循环(置换群的预备知识?),那么总行数就等于各个循环长度的最小公倍数+1(因为有个第一行的1~N).那么有多少种可能的排数就等于问有多少种可能的最小公倍数. 呃现在问题就变成了:给你一个数N,将它分解成几个数的和,然后找这些数的最小公倍数总共多少种.很明显又要找质数了>_>. 可以发现只要找循环长度(即拆出来的数)是质数的幂的情况就可以了,因为像6=2*3这种情况,我们可以用2和3来代替,又由于对于正整数来说,和$\leq$积,所以所有的非质数幂的情况…