差异研究的目的在于比较两组数据或多组数据之间的差异,通常包括以下几类分析方法,分别是方差分析.T检验和卡方检验. 三个方法的区别 其实核心的区别在于:数据类型不一样.如果是定类和定类,此时应该使用卡方分析:如果是定类和定量,此时应该使用方差或者T检验. 方差和T检验的区别在于,对于T检验的X来讲,其只能为2个类别比如男和女.如果X为3个类别比如本科以下,本科,本科以上:此时只能使用方差分析. 进一步细分 三种方法的具体分类汇总 1)方差分析 根据X的不同,方差分析又可以进行细分.X的个数为一个时…
本节内容: 1:相关分析 2:卡方分析 一.相关分析 相关系数: 皮尔逊相关系数:一般用来计算两个连续型变量的相关系数. 肯德尔相关系数:一个连续一个分类(最好是定序变量) 斯皮尔曼相关系数:2个变量无论连续还是分类都可以,但斯皮尔曼是非参数的,会损失信息,尽量不用 肯德尔:是秩的相关 要先对x和y进行排序,再计算x-y的商 #对异常值是不敏感的,异常值x是10000,排秩那他也就是4 ##研究的是收入和信用卡消费水平是否相关 散点图矩阵: 二.卡方分析 研究的是 分类跟分类之间的数据…
如果你在寻找卡方分布是什么?如何实现卡方检验?那么请看这篇博客,将以通俗易懂的语言,全面的阐述卡方.卡方检验及其python实现. 1. 卡方分布 1.1 简介 抽样分布有三大应用:T分布.卡方分布和$\Gamma$分布.可以简单用四个字概括它们的作用:“以小博大”,即通过小数量的样本容量去预估总体容量的分布情况.这里开始介绍卡方分布.${\chi ^{\text{2}}}$分布在数理统计中具有重要意义.  ${\chi ^{\text{2}}}$分布是由阿贝(Abbe)于1863年首先提出的,…
T分布:温良宽厚 本文由“医学统计分析精粹”小编“Hiu”原创完成,文章采用知识共享Attribution-NonCommercial-NoDerivatives 4.0国际许可协议(http://creativecommons.org/licenses/by-nc-nd/4.0/)进行许可,转载署名需附带本号二维码,不可用于商业用途,不允许任何修改,任何谬误建议,请直接反馈给原作者,谢谢合作! 命名与源起 “t”,是伟大的Fisher为之取的名字.Fisher最早将这一分布命名为“Studen…
上一篇文章基于Python的信用评分卡模型分析(一)已经介绍了信用评分卡模型的数据预处理.探索性数据分析.变量分箱和变量选择等.接下来我们将继续讨论信用评分卡的模型实现和分析,信用评分的方法和自动评分系统. 六.模型分析 证据权重(Weight of Evidence,WOE)转换可以将Logistic回归模型转变为标准评分卡格式.引入WOE转换的目的并不是为了提高模型质量,只是一些变量不应该被纳入模型,这或者是因为它们不能增加模型值,或者是因为与其模型相关系数有关的误差较大,其实建立标准信用评…
最近花时间研究了一下 MMC 卡驱动程序,开始在网上找了很多关于 MMC 卡驱动的分析文章,但大都是在描述各个层,这对于初学者来讲帮助并不大,所以我就打算把自己的理解写下来,希望对大家有用.个人觉得理解 LINUX 内核当中 MMC/SD 卡驱动程序构架是学习 MMC 卡驱动程序的重点,只有理解了它的基本框架或流程才能真正理解一个块设备驱动程序的写法,同时才能真正理解 LINUX 设备驱动模型是如何发挥作用的. 一.需要的基础知识: LINUX 设备驱动的基本结构. 块设备驱动程序的基本构架(相…
转载:https://zhuanlan.zhihu.com/p/38440477 转载:https://blog.csdn.net/starzhou/article/details/78930490 转载:https://www.cnblogs.com/wzdLY/p/9649101.html 1.离散的优势: (1)离散化后的特征对异常数据有很强的鲁棒性:比如一个特征是年龄>30是1,否则0.如果特征没有离散化,一个异常数据“年龄300岁”会给模型造成很大的干扰: (2)逻辑回归属于广义线性模…
RGBHistogram: 分别计算把彩色图像的三个通道R.G.B的一维直方图,然后把这三个通道的颜色直方图结合起来,就是颜色的描写叙述子RGBHistogram. 以下给出计算RGBHistogram的代码: <span style="font-family:Microsoft YaHei;font-size:18px;">#include "opencv2/highgui/highgui.hpp" #include "opencv2/img…
Android 界面滑动卡顿分析与解决方案(入门) 导致Android界面滑动卡顿主要有两个原因: 1.UI线程(main)有耗时操作 2.视图渲染时间过长,导致卡顿 目前只讲第1点,第二点相对比较复杂待以后慢慢研究. 众所周知,界面的流畅度主要依赖FPS这个值,这个值是通过(1s/渲染1帧所花费的时间)计算所得,FPS值越大视频越流畅,所以就需要渲染1帧的时间能尽量缩短.正常流畅度的FPS值在60左右,即渲染一帧的时间不应大于17ms. 先看一个例子: 见Video1,该应用通过一组URL加载…
不多说,直接上干货! 特征选择里,常见的有:VectorSlicer(向量选择) RFormula(R模型公式) ChiSqSelector(卡方特征选择). ChiSqSelector用于使用卡方检验来选择特征(降维).即来特征选择. 我这里,采取手动创建.(但是,这仅仅是为了初学者.我不建议,最好用maven) 完整代码 ChiSqSelector .scala package zhouls.bigdata.DataFeatureSelection import org.apache.spa…