pytorch(14)权值初始化】的更多相关文章

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/grad_vanish_explod.py 在搭建好网络模型之后,一个重要的步骤就是对网络模型中的权值进行初始化.适当的权值初始化可以加快模型的收敛,而不恰当的权值初始化可能引发梯度消失或者梯度爆炸,最终导致模型无法收敛.下面分 3 部分介绍.第一部分介绍不恰当的权值初始化是如何引发梯度消失与梯度爆炸的,第二部分介绍常用的 Xavier 方法与 Kaim…
首先说明:在caffe/include/caffe中的 filer.hpp文件中有它的源文件,如果想看,可以看看哦,反正我是不想看,代码细节吧,现在不想知道太多,有个宏观的idea就可以啦,如果想看代码的具体的话,可以看:http://blog.csdn.net/xizero00/article/details/50921692,写的还是很不错的(不过有的地方的备注不对,不知道改过来了没). 文件 filler.hpp提供了7种权值初始化的方法,分别为:常量初始化(constant).高斯分布初…
https://blog.csdn.net/u011534057/article/details/51673458 https://blog.csdn.net/qq_34784753/article/details/78668884 https://blog.csdn.net/kangroger/article/details/61414426 https://www.cnblogs.com/lindaxin/p/8027283.html 神经网络中权值初始化的方法 <Understanding…
权值的方差过大导致梯度爆炸的原因 方差一致性原则分析Xavier方法与Kaiming初始化方法 饱和激活函数tanh,非饱和激活函数relu pytorch提供的十种初始化方法 梯度消失与爆炸 \[H_2 = H_1 * W_2\\ \Delta W_2 = \frac{\partial Loss}{\partial W_2} =\frac{\partial Loss}{\partial out} *\frac{\partial out}{\partial H_2} *\frac{\partia…
设计好神经网络结构以及loss function 后,训练神经网络的步骤如下: 初始化权值参数 选择一个合适的梯度下降算法(例如:Adam,RMSprop等) 重复下面的迭代过程: 输入的正向传播 计算loss function 的值 反向传播,计算loss function 相对于权值参数的梯度值 根据选择的梯度下降算法,使用梯度值更新每个权值参数 初始化 神经网络的训练过程是一个迭代的过程,俗话说:好的开始就是成功的一半,所以的权值参数的初始化的值对网络最终的训练结果有很大的影响. 过大或者…
pytorch在torch.nn.init中提供了常用的初始化方法函数,这里简单介绍,方便查询使用. 介绍分两部分: 1. Xavier,kaiming系列: 2. 其他方法分布 Xavier初始化方法,论文在<Understanding the difficulty of training deep feedforward neural networks> 公式推导是从“方差一致性”出发,初始化的分布有均匀分布和正态分布两种. 1. Xavier均匀分布 torch.nn.init.xavi…
激活函数的选择: 西格玛只在二元分类的输出层还可以用,但在二元分类中,其效果不如tanh,效果不好的原因是当Z大时,斜率变化很小,会导致学习效率很差,从而很影响运算的速度.绝大多数情况下用的激活函数是ReLu,带泄露的ReLu效果更好,但并不常用. 使用非线性激活函数的原因:如果用线性激活函数,那么隐藏层就会失去作用. 西格玛激活函数的斜率: tanh激活函数: ReLU: Leaky ReLU: 权值w初始化的值不能全为0,因为如果全为0,那么隐藏层的每个单元都是对称的了,即每个单元都做相同的…
传送门 整体二分好题. 题意简述:nnn种果汁,每种有三个属性:美味度,单位体积价格,购买体积上限. 现在有mmm个询问,每次问能否混合出总体积大于某个值,总价格小于某个值的果汁,如果能,求所有方案中用于混合的果汁的美味度的最小值的最大值. 思路: 首先考虑单次询问怎么做,看这个询问的类型应该可以二分答案. 接着思考如何checkcheckcheck,这个时候可以发现果汁可以按照美味度单调递减排列来让我们二分这个答案. 拍完序之后就可以采用贪心的方式,我们知道应该从单位体积从小到大买,因此我们建…
文章来自公众号[机器学习炼丹术] 1 stochastic weight averaging(swa) 随机权值平均 这是一种全新的优化器,目前常见的有SGB,ADAM, [概述]:这是一种通过梯度下降改善深度学习泛化能力的方法,而且不会要求额外的计算量,可以用到Pytorch的优化器中. 随机权重平均和随机梯度下降SGD相似,所以我一般吧SWa看成SGD的进阶版本. 1.1 原理与算法 swa算法流程: [怎么理解]: 对\(w_{swa}\)做了一个周期为c的滑动平均.每迭代c次,就会对这个…
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1459 题意:中文题诶- 思路:带权值的最短路,这道题数据也没啥特殊,spaf,floyd, dijkstra 都可以过,我这里就写个dijkstra好了... dijkstra算法和最小生成树的prime有点像,prime算法是将所有点分成两个点集s, w,初始时s中只有一个点,然后依次将w中距离s集合最近的点加入s集合中,直至w为空集.. 这两个算法的区别…