LCS2 - Longest Common Substring II no tags  A string is finite sequence of characters over a non-empty finite set Σ. In this problem, Σ is the set of lowercase letters. Substring, also called factor, is a consecutive sequence of characters occurrence…
后缀自动机裸题 #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i) #define D(i,j,k) for (int i=j;i<=k;--i) #define inf 0x3f3f3f3f #define ll long…
手动博客搬家: 本文发表于20181217 23:54:35, 原地址https://blog.csdn.net/suncongbo/article/details/85058680 人生第一道后缀自动机. 说实话SAM我还没学多么明白. 但是题还是要做的. 说起来这玩意真的很妙.可惜我智商低理解不了. 再次验证了代码能力菜到没边.hyw 30min写完我写2.5h. 题目链接 (洛谷) https://www.luogu.org/problemnew/show/SP1812 题目大意 给\(n…
[SPOJ]Longest Common Substring(后缀自动机) 题面 Vjudge 题意:求两个串的最长公共子串 题解 \(SA\)的做法很简单 不再赘述 对于一个串构建\(SAM\) 另外一个串在\(SAM\)上不断匹配 最后计算答案就好了 匹配方法: 如果\(trans(s,c)\)存在 直接沿着\(trans\)走就行,同时\(cnt++\) 否则沿着\(parent\)往上跳 如果存在\(trans(now,c),cnt=now.longest+1\) 否则,如果不存在可行的…
spoj 1812 LCS2 - Longest Common Substring II 题意: 给出最多n个字符串A[1], ..., A[n], 求这n个字符串的最长公共子串. 限制: 1 <= n <= 10 |A[i]| <= 1e5 思路: 和spoj 1811 LCS几乎相同的做法 把当中一个A建后缀自己主动机 考虑一个状态s, 假设A之外的其它串对它的匹配长度各自是a[1], a[2], ..., a[n - 1], 那么min(a[1], a[2], ..., a[n -…
LCS2 - Longest Common Substring II A string is finite sequence of characters over a non-empty finite set Σ. In this problem, Σ is the set of lowercase letters. Substring, also called factor, is a consecutive sequence of characters occurrences at leas…
题意: 求\(n\)个串的最大\(LCS\). 思路: 把第一个串建后缀自动机,然后枚举所有串.对于每个串,求出这个串在\(i\)节点的最大匹配为\(temp[i]\)(当前串在这个节点最多取多少),然后我们求出最终所有串在\(i\)节点的匹配最小值\(mn[i]\)(即为所有串在\(i\)节点都能取到多少),答案即为\(max\{min[i]\}\). 但是我们能发现,如果我们更新了\(temp[i]\),那么其实\(fa[i]\)的\(temp[fa[i]]\)也应该要更新,因为父节点是我的…
原文链接http://www.cnblogs.com/zhouzhendong/p/8982484.html 题目传送门 - SPOJ LCS2 题意 求若干$(若干<10)$个字符串的最长公共连续子串长度. 串长$\leq 100000$ 题解 建议在做本题之前,先去做SPOJ LCS,本题是其升级版. 题解链接 - SPOJ LCS - http://www.cnblogs.com/zhouzhendong/p/8982392.html 对于本题,我们只需要保持一下之后每一个串在第一个串的$…
题目链接:http://www.spoj.com/problems/LCS2/ 其实两个串的LCS会了,多个串的LCS也就差不多了. 我们先用一个串建立后缀自动机,然后其它的串在上面跑.跑的时候算出每一个位置能往左扩展的最大长度也就是LCS. 于是对于每一个状态维护mx数组,表示当前串与SAM在此状态的LCS值.对于一个状态取所有mx中的最小值,然后答案就是所有状态最小值中的最大值,证明显然. 两个串的时候不用拿一个状态更新其祖先状态,但是这里需要.SAM是一个DAG图,我们通过l数组来基数排序…
题意: 求两个串的最大\(LCS\). 思路: 把第一个串建后缀自动机,第二个串跑后缀自动机,如果一个节点失配了,那么往父节点跑,期间更新答案即可. 代码: #include<set> #include<map> #include<cmath> #include<queue> #include<bitset> #include<string> #include<cstdio> #include<vector>…