Apache Hudi + AWS S3 + Athena实战】的更多相关文章

Apache Hudi在阿里巴巴集团.EMIS Health,LinkNovate,Tathastu.AI,腾讯,Uber内使用,并且由Amazon AWS EMR和Google云平台支持,最近Amazon Athena支持了在Amazon S3上查询Apache Hudi数据集的能力,本博客将测试Athena查询S3上Hudi格式数据集. 1. 准备-Spark环境,S3 Bucket 需要使用Spark写入Hudi数据,登陆Amazon EMR并启动spark-shell: $ export…
1. 引入 数据湖使组织能够在更短的时间内利用多个源的数据,而不同角色用户可以以不同的方式协作和分析数据,从而实现更好.更快的决策.Amazon Simple Storage Service(amazon S3)是针对结构化和非结构化数据的高性能对象存储服务,可以用来作为数据湖底层的存储服务. 然而许多用例,如从上游关系数据库执行变更数据捕获(CDC)到基于Amazon S3的数据湖,都需要在记录级别处理数据,执行诸如从数据集中插入.更新和删除单条记录的操作需要处理引擎读取所有对象(文件),进行…
将数据存储在Amazon S3中可带来很多好处,包括规模.可靠性.成本效率等方面.最重要的是,你可以利用Amazon EMR中的Apache Spark,Hive和Presto之类的开源工具来处理和分析数据. 尽管这些工具功能强大,但是在处理需要进行增量数据处理以及记录级别插入,更新和删除场景时,仍然非常具有挑战. 与客户交谈时,我们发现有些场景需要处理对单条记录的增量更新,例如: 遵守数据隐私法规,在该法规中,用户选择忘记或更改应用程序对数据使用方式的协议. 使用流数据,当你必须要处理特定的数…
1. 引入 Apache Hudi是一个开源的增量数据处理框架,提供了行级insert.update.upsert.delete的细粒度处理能力(Upsert表示如果数据集中存在记录就更新:否则插入). Hudi处理数据插入和更新,不会创建太多的小文件(小文件会导致查询端性能降低),Apache Hudi自动管理及合并小文件,让其保持指定大小,这避免了自建解决方案来监控和重写小文件为大文件. Hudi数据集在如下场景下非常适用 使用GDPR和CCPA法规来删除用户个人信息或修改个人信息用途. 处…
认识Lakehouse 数据仓库被认为是对结构化数据执行分析的标准,但它不能处理非结构化数据. 包括诸如文本.图像.音频.视频和其他格式的信息. 此外机器学习和人工智能在业务的各个方面变得越来越普遍,它们需要访问数据仓库之外的大量信息. 开放的Lakehouse 云计算发展引发了计算与存储分离,这利用了成本优势并能够灵活地存储来自多个来源的数据. 所有这一切都催生了开放Lakehouse的新数据平台架构.现在通过使用 Presto 和 Apache Hudi 等开源和开放格式技术解决了传统云数据…
1. 引入 云上对象存储的廉价让不少公司将其作为主要的存储方案,而Hudi作为数据湖解决方案,支持对象存储也是必不可少.之前AWS EMR已经内置集成Hudi,也意味着可以在S3上无缝使用Hudi.当然国内用户可能更多使用阿里云OSS作为云上存储方案,那么如果用户想基于OSS构建数据湖,那么Hudi是否支持呢?随着Hudi社区主分支已经合并了支持OSS的PR,现在只需要基于master分支build版本即可,或者等待下一个版本释出便可直接使用,经过简单的配置便可将数据写入OSS. 2. 配置 2…
1. 概述 成千上万的客户在Amazon EMR上使用Apache Spark,Apache Hive,Apache HBase,Apache Flink,Apache Hudi和Presto运行大规模数据分析应用程序.Amazon EMR自动管理这些框架的配置和扩缩容,并通过优化的运行时提供更高性能,并支持各种Amazon Elastic Compute Cloud(Amazon EC2)实例类型和Amazon Elastic Kubernetes Service(Amazon EKS)集群.…
1. Glue与Hudi简介 AWS Glue AWS Glue是Amazon Web Services(AWS)云平台推出的一款无服务器(Serverless)的大数据分析服务.对于不了解该产品的读者来说,可以用一句话概括其实质:Glue是一个无服务器的全托管的Spark运行环境,只需提供Spark程序代码即可运行Spark作业,无需维护集群. Apach Hudi Apache Hudi最早由Uber设计开发,后提交给Apache孵化器,2020年5月,Hudi正式升级为Apache的顶级项…
1. 准备 Hudi支持Spark-2.x版本,你可以点击如下链接安装Spark,并使用pyspark启动 # pyspark export PYSPARK_PYTHON=$(which python3) spark-2.4.4-bin-hadoop2.7/bin/pyspark \ --packages org.apache.hudi:hudi-spark-bundle_2.11:0.5.1-incubating,org.apache.spark:spark-avro_2.11:2.4.4 \…
1. 可用性 在Hudi最新master分支,由Hudi活跃贡献者Raymond Xu贡献了DataDog监控Hudi应用指标,该功能将在0.6.0 版本发布,也感谢Raymond的投稿. 2. 简介 Datadog是一个流行的监控服务.在即将发布的Apache Hudi 0.6.0版本中,除已有的报告者类型(Graphite和JMX)之外,我们将引入通过Datadog HTTP API报告Hudi指标的功能. 3. 配置 类似于其他支持的报告者,启用Datadog报告者需要以下两个属性. ho…
1. 下载信息 源码:Apache Hudi 0.6.0 Source Release (asc, sha512) 二进制Jar包:nexus 2. 迁移指南 如果您从0.5.3以前的版本迁移至0.6.0,请仔细核对每个版本的迁移指南: 0.6.0版本从基于list的rollback策略变更为了基于marker文件的rollback策略,为进行平稳迁移,会在hoodie.properties文件中配置一个新属性hoodie.table.version:无论何时使用Hudi表新版本,如1(从0.6…
1. 介绍 Apache Hudi是一个开源的数据湖框架,旨在简化增量数据处理和数据管道开发.借助Hudi可以在Amazon S3.Aliyun OSS数据湖中进行记录级别管理插入/更新/删除.AWS EMR集群已支持Hudi组件,并且可以与AWS Glue Data Catalog无缝集成.此特性可使得直接在Athena或Redshift Spectrum查询Hudi数据集. 对于企业使用AWS云的一种常见数据流如图1所示,即将数据实时复制到S3. 本篇文章将介绍如何使用Oracle Gold…
​Apache Hudi是一个开源的数据管理框架,其通过提供记录级别的insert, update, upsert和delete能力来简化增量数据处理和数据管道开发.Upsert指的是将记录插入到现有数据集中(如果它们不存在)或进行更新(如果它们存在的话)的功能.通过高效管理Amazon S3中数据的布局方式,Hudi允许近乎实时地提取和更新数据.Hudi维护在数据集上所执行的操作的元数据,以确保这些操作的原子性和一致性. Hudi可与Apache Spark.Apache Hive和Prest…
马萨诸塞州韦克菲尔德(Wakefield,MA)- 2020年6月 - Apache软件基金会(ASF).350多个开源项目和全职开发人员.管理人员和孵化器宣布:Apache Hudi正式成为Apache顶级项目(TLP).在投票表决Hudi毕业时,Hudi总共获得了19票binding(其中包括ASF联合创始人Jim Jagielski的一票),21票non-binding. Apache Hudi(Hadoop Upserts Delete and Incremental)数据湖技术可在Ap…
1. 引入 大多数现代数据湖都是基于某种分布式文件系统(DFS),如HDFS或基于云的存储,如AWS S3构建的.遵循的基本原则之一是文件的"一次写入多次读取"访问模型.这对于处理海量数据非常有用,如数百GB到TB的数据. 但是在构建分析数据湖时,更新数据并不罕见.根据不同场景,这些更新频率可能是每小时一次,甚至可能是每天或每周一次.另外可能还需要在最新视图.包含所有更新的历史视图甚至仅是最新增量视图上运行分析. 通常这会导致使用用于流和批处理的多个系统,前者处理增量数据,而后者处理历…
1. 引入 开源Apache Hudi项目为Uber等大型组织提供流处理能力,每天可处理数据湖上的数十亿条记录. 随着世界各地的组织采用该技术,Apache开源数据湖项目已经日渐成熟. Apache Hudi(Hadoop Upserts Deletes and Incrementals)是一个数据湖项目,可在与Apache Hadoop兼容的云存储系统(包括Amazon S3.Aliyun OSS)上进行流数据处理. 该项目最初于2016年在Uber开发,于2017年成为开源,并于2019年1…
1. 概述 在nClouds上,当客户的业务决策取决于对近实时数据的访问时,客户通常会向我们寻求有关数据和分析平台的解决方案.但随着每天创建和收集的数据量都在增加,这使得使用传统技术进行数据分析成为一项艰巨的任务. 本文我们将讨论nClouds如何帮助您应对数据延迟,数据质量,系统可靠性和数据隐私合规性方面的挑战. Amazon EMR上的Apache Hudi是需要构建增量数据管道.大规模近实时处理数据的理想解决方案.本篇文章将在Amazon EMR的Apache Hudi上进行原型验证. n…
T3出行的杨华和张永旭描述了他们数据湖架构的发展.该架构使用了众多开源技术,包括Apache Hudi和Alluxio.在本文中,您将看到我们如何使用Hudi和Alluxio将数据摄取时间缩短一半.此外,数据分析人员如何使用Presto.Hudi和Alluxio让查询速度提高了10倍.我们基于数据编排为数据管道的多个阶段(包括提取和分析)构建了数据湖. 1.T3出行数据湖总览 T3出行当前还处于业务扩张期,在构建数据湖之前不同的业务线,会选择不同的存储系统.传输工具以及处理框架,从而出现了严重的…
Hopsworks特征存储库统一了在线和批处理应用程序的特征访问而屏蔽了双数据库系统的复杂性.我们构建了一个可靠且高性能的服务,以将特征物化到在线特征存储库,不仅仅保证低延迟访问,而且还保证在服务时间可以访问最新鲜的特征值. 企业机器学习模型为指导产品用户交互提供了价值价值.通常这些 ML 模型应用于整个实体数据库,例如由唯一主键标识用户.离线应用程序的一个示例是预测客户终身价值(Customer Lifetime Value),其中可以定期(每晚.每周)分批预测,然后用于选择营销活动的目标受众…
1. 摘要 Hudi 支持在写入时自动清理未成功提交的数据.Apache Hudi 在写入时引入标记机制来有效跟踪写入存储的数据文件. 在本博客中,我们将深入探讨现有直接标记文件机制的设计,并解释了其在云存储(如 AWS S3.Aliyun OSS)上针对非常大批量写入的性能问题. 并且演示如何通过引入基于时间轴服务器的标记来提高写入性能. 2. 为何引入Markers机制 Hudi中的marker是一个表示存储中存在对应的数据文件的标签,Hudi使用它在故障和回滚场景中自动清理未提交的数据.…
徐昱 Apache Hudi Contributor:华米高级大数据开发工程师 巨东东 华米大数据开发工程师 1. 应用背景及痛点介绍 华米科技是一家基于云的健康服务提供商,拥有全球领先的智能可穿戴技术.在华米科技,数据建设主要围绕两类数据:设备数据和APP数据,这些数据存在延迟上传.更新频率高且广.可删除等特性,基于这些特性,前期数仓ETL主要采取历史全量+增量模式来每日更新数据.随着业务的持续发展,现有数仓基础架构已经难以较好适应数据量的不断增长,带来的显著问题就是成本的不断增长和产出效率的…
1. 背景 OnZoom是Zoom新产品,是基于Zoom Meeting的一个独一无二的在线活动平台和市场.作为Zoom统一通信平台的延伸,OnZoom是一个综合性解决方案,为付费的Zoom用户提供创建.主持和盈利的活动,如健身课.音乐会.站立表演或即兴表演,以及Zoom会议平台上的音乐课程. 在OnZoom data platform中,source数据主要分为MySQL DB数据和Log数据. 其中Kafka数据通过Spark Streaming job实时消费,MySQL数据通过Spark…
1. 摘要 本文演示了使用外部表集成 Vertica 和 Apache Hudi. 在演示中我们使用 Spark 上的 Apache Hudi 将数据摄取到 S3 中,并使用 Vertica 外部表访问这些数据. 2. Apache Hudi介绍 Apache Hudi 是一种变更数据捕获 (CDC) 工具,可在不同时间线将事务记录在表中. Hudi 代表 Hadoop Upserts Deletes and Incrementals,是一个开源框架. Hudi 提供 ACID 事务.可扩展的元…
1. 摘要 Robinhood 的使命是使所有人的金融民主化. Robinhood 内部不同级别的持续数据分析和数据驱动决策是实现这一使命的基础. 我们有各种数据源--OLTP 数据库.事件流和各种第 3 方数据源.需要快速.可靠.安全和以隐私为中心的数据湖摄取服务来支持各种报告.关键业务管道和仪表板. 不仅在数据存储规模和查询方面,也在我们在数据湖支持的用例方面,我们从最初的数据湖版本都取得了很大的进展.在这篇博客中,我们将描述如何使用各种开源工具构建基于变更数据捕获的增量摄取,以将我们核心数…
从 Hudi v0.10.0 开始,我们很高兴地宣布推出适用于 Deltastreamer 的 Debezium 源,它提供从 Postgres 和 MySQL 数据库到数据湖的变更捕获数据 (CDC) 的摄取.有关详细信息请参阅原始 RFC 1. 背景 当想要对来自事务数据库(如 Postgres 或 MySQL)的数据执行分析时,通常需要通过称为更改数据捕获 CDC的过程将此数据引入数据仓库或数据湖等 OLAP 系统. Debezium 是一种流行的工具,它使 CDC 变得简单,其提供了一种…
1. 摘要 在本博客中,我们将讨论在构建流数据平台时如何利用 Hudi 的两个最令人难以置信的能力. 增量消费--每 30 分钟处理一次数据,并在我们的组织内构建每小时级别的OLAP平台 事件流的无限回放--利用 Hudi 的提交时间线在超级便宜的云对象存储(如 AWS S3)中存储 10 天的事件流(想象一个具有 10 天保留期的 kafka 主题) 具有部分记录更新的自定义 Hudi Payload 类 2. 当前状态 2.1 问题说明 对于大多数业务需要手动干预以通过查看 KPI 和数据趋…
1. 业务背景介绍 客路旅行(KLOOK)是一家专注于境外目的地旅游资源整合的在线旅行平台,提供景点门票.一日游.特色体验.当地交通与美食预订服务.覆盖全球100个国家及地区,支持12种语言和41种货币的支付系统,与超过10000家商户合作伙伴紧密合作,为全球旅行者提供10万多种旅行体验预订服务. KLOOK数仓RDS数据同步是一个很典型的互联网电商公司数仓接入层的需求.对于公司数仓,约60%以上的数据直接来源与业务数据库,数据库有很大一部分为托管的AWS RDS-MYSQL 数据库,有超100…
近年来出现了从单体架构向微服务架构的转变.微服务架构使应用程序更容易扩展和更快地开发,支持创新并加快新功能上线时间.但是这种方法会导致数据存在于不同的孤岛中,这使得执行分析变得困难.为了获得更深入和更丰富的见解,企业应该将来自不同孤岛的所有数据集中到一个地方. AWS 提供复制工具,例如 AWS Database Migration Service (AWS DMS),用于将数据更改从各种源数据库复制到各种目标,包括 Amazon Simple Storage Service (Amazon S…
Install the SDK The recommended way to use the AWS SDK for Java in your project is to consume it from Maven. Import the aws-java-sdk-bom and specify the SDK Maven modules that your project needs in the dependencies. Importing the BOM <dependencyManag…
Apache Hudi Apache Hudi 在基于 HDFS/S3 数据存储之上,提供了两种流原语: 插入更新 增量拉取 一般来说,我们会将大量数据存储到HDFS/S3,新数据增量写入,而旧数据鲜有改动,特别是在经过数据清洗,放入数据仓库的场景.而且在数据仓库如 hive中,对于update的支持非常有限,计算昂贵.另一方面,若是有仅对某段时间内新增数据进行分析的场景,则hive.presto.hbase等也未提供原生方式,而是需要根据时间戳进行过滤分析. 在此需求下,Hudi可以提供这两种…