网上有很多关于tensorflow lite在安卓端部署的教程,但是大多只讲如何把训练好的模型部署到安卓端,不讲如何训练,而实际上在部署的时候,需要知道训练模型时预处理的细节,这就导致了自己训练的模型在部署到安卓端的时候出现各种问题.因此,本文会记录从PC端训练.导出到安卓端部署的各种细节.欢迎大家讨论.指教. PC端系统:Ubuntu14 tensorflow版本:tensroflow1.14 安卓版本:9.0 PC端训练过程 数据集:自定义生成 训练框架:tensorflow slim  关…
在C#下使用TensorFlow.NET训练自己的数据集 今天,我结合代码来详细介绍如何使用 SciSharp STACK 的 TensorFlow.NET 来训练CNN模型,该模型主要实现 图像的分类 ,可以直接移植该代码在 CPU 或 GPU 下使用,并针对你们自己本地的图像数据集进行训练和推理.TensorFlow.NET是基于 .NET Standard 框架的完整实现的TensorFlow,可以支持 .NET Framework 或 .NET CORE , TensorFlow.NET…
1.复现VGG训练自定义图像分类,成功了哈哈. 需要代码工程可联系博主qq号,在左边连接可找到. 核心代码: # coding:utf-8 import tensorflow as tf import os from load_vgg19_model import net os.environ[' def VGG19_image_classifier(X,Y,nn_classes): vgg19_path = "./vgg19_model/imagenet-vgg-verydeep-19.mat…
tensorflow笔记系列: (一) tensorflow笔记:流程,概念和简单代码注释 (二) tensorflow笔记:多层CNN代码分析 (三) tensorflow笔记:多层LSTM代码分析 (四) tensorflow笔记:常用函数说明 (五) tensorflow笔记:模型的保存与训练过程可视化 (六)tensorflow笔记:使用tf来实现word2vec 在之前的tensorflow笔记:流程,概念和简单代码注释 文章中,已经大概解释了tensorflow的大概运行流程,并且提…
https://blog.csdn.net/hjimce/article/details/61197190  tensorflow分布式训练 https://cloud.tencent.com/developer/article/1006345  分布式 TensorFlow,分布式原理.最佳实践 https://www.jianshu.com/p/fdb93e44a8cc  TensorFlow分布式全套(原理,部署,实例) https://zhuanlan.zhihu.com/p/30914…
上一篇笔记主要介绍了卷积神经网络相关的基础知识.在本篇笔记中,将参考TensorFlow官方文档使用mnist数据集,在TensorFlow上训练一个多层卷积神经网络. 下载并导入mnist数据集 首先,利用input_data.py来下载并导入mnist数据集.在这个过程中,数据集会被下载并存储到名为"MNIST_data"的目录中. import input_data mnist = input_data.read_data_sets('MNIST_data', one_hot=T…
Tensorflow Mask-RCNN训练识别箱子的模型…
现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过直接调用 TensorFlow 的 C/C++ 接口来导入 TensorFlow 预训练好的模型. 1.环境配置 点此查看 C/C++ 接口的编译 2. 导入预定义的图和训练好的参数值 // set up your input paths const string pathToGraph = "/ho…
现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过 C/C++ 间接调用 Python 的方式来实现在 C/C++ 程序中调用 TensorFlow 预训练好的模型. 1. 环境配置 为了能在 C/C++ 中调用 Python,我们需要配置一下头文件和库的路径,本文以 Code::Blocks 为例介绍. 在 Build -> Project opt…
# 安装 2.7 环境conda create -n python2. python= conda activate python2. # 安装 1.1.0 gpu版本pip # 配置环境变量export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64 export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-8.0/lib64:/usr/local/cuda-8.0/ex…