本例将会展示对确实值进行填充能比简单的对样例中缺失值进行简单的丢弃能获得更好的结果.填充不一定能提升预测精度,所以请通过交叉验证进行检验.有时删除有缺失值的记录或使用标记符号会更有效. 缺失值可以被替换为均值,中值,或使用strategy超参数最高频值.中值是对于具有可以主宰的高强度值数据是有较好鲁棒性的评估期(注:可以住在结果的高强度值一个更用用的名字是---长尾). 脚本输出: 整个数据集得分 = 0.56 不包含有缺失值的记录的得分 = 0.48 经过缺失值填充之后的得分 = 0.57 在…
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的句子,我以自己的理解意译. 翻译自:Scikit Learn:Machine Learning in Python 作者: Fabian Pedregosa, Gael Varoquaux 先决条件 Numpy, Scipy IPython matplotlib scikit-learn 目录 载入…
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk…
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的常见准则有: 1.      均方误差(mean squared error,MSE): 2.      平均绝对误差(mean absolute error,MAE) 3.      R2 score:scikit learn线性回归模型的缺省评价准则,既考虑了预测值与真值之间的差异,也考虑了问题…
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉验证 交叉验证用于评估模型性能和进行参数调优(模型选择).分类任务中交叉验证缺省是采用StratifiedKFold. sklearn.cross_validation.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jo…
Selenium 获取 JavaScript 返回值非常简单,只需要在 js 脚本中将需要返回的数据 return 就可以,然后通过方法返回 js 的执行结果,方法源码如下所示: /** * Get Object of return from js * * @author Aaron.ffp * @version V1.0.0: autoSeleniumDemo main.aaron.sele.core SeleniumCore.java execJSR, 2015-8-9 1:39:17 Ex…
redis 实例2 构建文章投票网站后端   1.限制条件 一.如果网站获得200张支持票,那么这篇文章被设置成有趣的文章 二.如果网站发布的文章中有一定数量被认定为有趣的文章,那么这些文章需要被设置在首页前一百至少一天. 三.不提供反对票功能. 2.程序需要随着时间不断减少评分,根据发布时间和当前时间来计算文章的评分  计算方法:文章得到的支持票数量乘以一个常量,然后加上文章发布时间.Unix时间.常量是432.这样文章没获得一票就可以加432分. 3.需要用redis存储各种数据,对于每篇文…
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.…
前言 本文主要介绍如果使用Python第三方库fontTools提取OpenType字体文件中的TrueType轮廓坐标以及如何构建基于TrueType的Glyph实例 TrueType轮廓坐标的获取 对于TrueType轮廓描述的OpenType文件,除了前文提到的利用ttx组件将表结构转化为XML文件方法,利用如下代码也可以直接获取具体的轮廓数据: from fontTools.ttLib import TTFont font = TTFont("Resources/simsun.ttf&q…
1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题. Scoring参数:使用cross-validation的模型评估工具,依赖于内部的scoring策略.见下. Metric函数:metrics模块实现了一些函数,用来评估预测误差.见下. 2. scoring参数 模型选择和评估工具,例如: grid_search.GridSearchCV 和 cross…