Spark UI (基于Yarn) 分析与定制】的更多相关文章

转载自:https://yq.aliyun.com/articles/60194 摘要: 这篇文章的主旨在于让你了解Spark UI体系,并且能够让你有能力对UI进行一些定制化增强.在分析过程中,你也会深深的感受到Scala语言的魅力. 前言 有时候我们希望能对Spark UI进行一些定制化增强.并且我们希望尽可能不更改Spark的源码.为了达到此目标,我们会从如下三个方面进行阐述: 理解Spark UI的处理流程 现有Executors页面分析 自己编写一个HelloWord页面 Spark…
Spark有几种部署的模式,单机版.集群版等等,平时单机版在数据量不大的时候可以跟传统的java程序一样进行断电调试.但是在集群上调试就比较麻烦了...远程断点不太方便,只能通过Log的形式,进行分析,利用spark ui做性能调整和优化. 那么本篇就介绍下如何利用Ui做性能分析,因为本人的经验也不是很丰富,所以只能作为一个入门的介绍. Spark UI入口 如果是单机版本,在单机调试的时候输出信息中已经提示了UI的入口: 17/02/26 13:55:48 INFO SparkEnv: Reg…
转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.html IBM 公司在 2015 年对外宣告了一个新的科技和商务时代的来临—认知时代.这个巨大的转变,来自 IBM 对技术和商业领域的三个重要的洞察力[1].第一,这个世界被数据所充斥.第二,这个世界通过代码被改造.第三,认知计算的出现.其中,认知计算可以: 通过感知与互动,理解非结构化数据 通过生成…
一.spark的三种提交模式 1.第一种,Spark内核架构,即standalone模式,基于Spark自己的Master-Worker集群. 2.第二种,基于YARN的yarn-cluster模式. 3.第三种,基于YARN的yarn-client模式. 如果,你要切换到第二种和第三种模式,在提交spark应用程序的spark-submit脚本加上--master参数,设置为yarn-cluster,或yarn-client,即可.如果没设置,那么,就是standalone模式. 一.基于YA…
Spark剖析-宽依赖与窄依赖.基于yarn的两种提交模式.sparkcontext原理剖析 一.宽依赖与窄依赖 二.基于yarn的两种提交模式深度剖析 2.1 Standalne-client 2.2 Standalone-cluster 三.sparkcontext原理剖析 一.宽依赖与窄依赖 二.基于yarn的两种提交模式深度剖析 Spark的三种提交模式: Spark内核架构中,其实就是第一种模式,standalone模式,基于Spark自己的Master-Worker集群. 第二种,基…
使用如下命令执行应用程序: 和"基于YARN的Resource Manager的Client模式(集群)"运行模式,区别如下: 在Resource Manager端提交应用程序,会生成SparkSubmit进程,该进程只用来做Client端,应用程序提交给集群后,就会删除该进程. Resource Manager在集群中的某个NodeManager上运行ApplicationMaster,该AM同时会执行driver程序.紧接着,会在各NodeManager上运行CoarseGrain…
当Spark程序在运行时,会提供一个Web页面查看Application运行状态信息.是否开启UI界面由参数spark.ui.enabled(默认为true)来确定.下面列出Spark UI一些相关配置参数,默认值,以及其作用. 参数 默认值 作用描述 spark.ui.enabled true 是否开启UI界面 spark.ui.port 4040(顺序探查空闲端口) UI界面的访问端口号 spark.ui.retainedJobs 1000 UI界面显示的Job个数 spark.ui.ret…
导入: 1)Spark Web UI主要依赖于流行的Servlet容器Jetty实现: 2)Spark Web UI(Spark2.3之前)是展示运行状况.资源状态和监控指标的前端,而这些数据都是由度量系统(MetricsSystem)收集来的: 3)Spark Web UI(spark2.3之后)呈现的数据应该与事件总线和ElementTrackingStore关系紧密,而MetricsSystem是一个向外部提供测量指标的存在 具体Spark UI存储更改可以通过spark issue查看:…
本文档基于Spark2.0,对spark启动脚本进行分析. date:2016/8/3 author:wangxl Spark配置&启动脚本分析 我们主要关注3类文件,配置文件,启动脚本文件以及自带shell. 1 文件概览 conf/ ├── docker.properties.template ├── fairscheduler.xml.template ├── log4j.properties.template ├── metrics.properties.template ├── sla…
一.三种提交模式 1.Spark内核架构,其实就是第一种模式,standalone模式,基于Spark自己的Master-Worker集群. 2.第二种,是基于YARN的yarn-cluster模式. 3.第三种,是基于YARN的yarn-client模式. 4.如果,你要切换到第二种和第三种模式,很简单,将我们之前用于提交spark应用程序的spark-submit脚本,加上--master参数,设置为yarn-cluster,或yarn-client,即可. 如果你没设置,那么,就是stan…
使用Spark MLlib进行情感分析             使用Spark MLlib进行情感分析 一.实验说明 在当今这个互联网时代,人们对于各种事情的舆论观点都散布在各种社交网络平台或新闻提要中.我们可以在移动设备或是个人PC上轻松地发布自己的观点.对于这种网上海量分布地数据,我们可以利用文本分析来挖掘各种观点.如下图中,CognoviLabs利用Twitter上人们发布对于美国大选两个候选人的推特,进行情感分析的结果.从这张图我们也可以直观地感受到民意所向(此图发表日期为10月10日,…
3. 创建并初始化Spark UI 任何系统都需要提供监控功能,用浏览器能访问具有样式及布局并提供丰富监控数据的页面无疑是一种简单.高效的方式.SparkUI就是这样的服务. 在大型分布式系统中,采用事件监听机制是最常见的.为什么要使用事件监听机制?假如SparkUI采用Scala的函数调用方式,那么随着整个集群规模的增加,对函数的调用会越来越多,最终会受到Driver所在JVM的线程数量限制而影响监控数据的更新,甚至出现监控数据无法及时显示给用户的情况.由于函数调用多数情况下是同步调用,这就导…
1.执行Spark运行在yarn上的命令报错 spark-shell --master yarn-client,错误如下所示: // :: ERROR SparkContext: Error initializing SparkContext. org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application…
上周Spark1.2刚发布,周末在家没事,把这个特性给了解一下,顺便分析下源码,看一看这个特性是如何设计及实现的. /** Spark SQL源码分析系列文章*/ (Ps: External DataSource使用篇地址:Spark SQL之External DataSource外部数据源(一)示例 http://blog.csdn.net/oopsoom/article/details/42061077) 一.Sources包核心 Spark SQL在Spark1.2中提供了External…
/** Spark SQL源码分析系列文章*/ 前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的. 那么基于以上存储结构,我们查询cache在jvm内的数据又是如何查询的,本文将揭示查询In-Memory Data的方式. 一.引子 本例使用hive console里查询cache后的src表. select value from src 当我们将src表cache到了内存后,再次查询src,可以通过analyzed执行计划来观察内部调用…
/** Spark SQL源码分析系列文章*/ Spark SQL 可以将数据缓存到内存中,我们可以见到的通过调用cache table tableName即可将一张表缓存到内存中,来极大的提高查询效率. 这就涉及到内存中的数据的存储形式,我们知道基于关系型的数据可以存储为基于行存储结构 或 者基于列存储结构,或者基于行和列的混合存储,即Row Based Storage.Column Based Storage. PAX Storage. Spark SQL 的内存数据是如何组织的? Spar…
/** Spark SQL源码分析系列文章*/ 接上一篇文章Spark SQL Catalyst源码分析之Physical Plan,本文将介绍Physical Plan的toRDD的具体实现细节: 我们都知道一段sql,真正的执行是当你调用它的collect()方法才会执行Spark Job,最后计算得到RDD. lazy val toRdd: RDD[Row] = executedPlan.execute() Spark Plan基本包含4种操作类型,即BasicOperator基本类型,还…
/** Spark SQL源码分析系列文章*/ 自从去年Spark Submit 2013 Michael Armbrust分享了他的Catalyst,到至今1年多了,Spark SQL的贡献者从几人到了几十人,而且发展速度异常迅猛,究其原因,个人认为有以下2点: 1.整合:将SQL类型的查询语言整合到 Spark 的核心RDD概念里.这样可以应用于多种任务,流处理,批处理,包括机器学习里都可以引入Sql.    2.效率:因为Shark受到hive的编程模型限制,无法再继续优化来适应Spark…
从决定写Spark SQL源码分析的文章,到现在一个月的时间里,陆陆续续差不多快完成了,这里也做一个整合和索引,方便大家阅读,这里给出阅读顺序 :) 第一篇 Spark SQL源码分析之核心流程 第二篇 Spark SQL Catalyst源码分析之SqlParser 第三篇 Spark SQL Catalyst源码分析之Analyzer 第四篇 Spark SQL Catalyst源码分析之TreeNode Library 第五篇 Spark SQL Catalyst源码分析之Optimize…
下图简单明了的描述了hadoop yarn 的功能是如何从 hadoop 中细化出来的. 注:图片来自 https://apprize.info/php/hadoop/9.html Hadoop 从 v2 开始,将资源调度与监控.任务作业的管理单独从 Hadoop 中抽取出来,即 原来的 JobTracker 和TaskTracker 的功能被抽取出来. YARN 全称为Yet Another Resource Negotiator,在于要提供一个共享的任务调度计算平台.其中将资源和作业分离开来…
1.为什么开启动态资源分配 ⽤户提交Spark应⽤到Yarn上时,可以通过spark-submit的num-executors参数显示地指定executor 个数,随后,ApplicationMaster会为这些executor申请资源,每个executor作为⼀个Container在 Yarn上运⾏.Spark调度器会把Task按照合适的策略分配到executor上执⾏.所有任务执⾏完后, executor被杀死,应⽤结束.在job运⾏的过程中,⽆论executor是否领取到任务,都会⼀直占有…
Idea里面远程提交spark任务到yarn集群 1.本地idea远程提交到yarn集群 2.运行过程中可能会遇到的问题 2.1首先需要把yarn-site.xml,core-site.xml,hdfs-site.xml放到resource下面,因为程序运行的时候需要这些环境 2.2权限问题 2.3缺失环境变量 2.4 没有设置driver的ip 2.5保证自己的电脑和虚拟机在同一个网段内,而且要关闭自己电脑的防火墙,不然可能会出现连接不上的情况. 作者:JasonLee 1.本地idea远程提…
Spark是基于内存的分布式计算引擎,以处理的高效和稳定著称.然而在实际的应用开发过程中,开发者还是会遇到种种问题,其中一大类就是和性能相关.在本文中,笔者将结合自身实践,谈谈如何尽可能地提高应用程序性能. 分布式计算引擎在调优方面有四个主要关注方向,分别是CPU.内存.网络开销和I/O,其具体调优目标如下: 提高CPU利用率. 避免OOM. 降低网络开销. 减少I/O操作. 第1章 数据倾斜 数据倾斜意味着某一个或某几个Partition中的数据量特别的大,这意味着完成针对这几个Partiti…
国内的mtm系统_百度搜索 基于网络的服装定制MTM系统研究 - 硕士论文 - 道客巴巴 PDF文档(共76页) - 下载需1800积分 天津工业大学 硕士学位论文基于网络的服装定制MTM系统研究 姓名:薛煜东 申请学位...目前已成为国内外服装行业的一个研究重点,其本质和核一心就是为客户提供专业化... www.doc88.com/p-209225... 2012-03-21     - 百度快照 - 74%好评…
首先我们应该弄清什么是hibernate缓存:hibernate缓存是指为了降低应用程序对物理数据源的访问频次,从而提高应用程序的运行性能的一种策略.我们要将这个跟计算机内存或者cpu的缓存区分开. 一.hibernate查询的几种方式 既然是基于查询分析hibernate一级缓存,我们就来分析分析hibernate查询方式 1.通过session对象的get()方法 我们通过查看hibernate的api文档找到了session接口,并重点看了get()方法,我们主要使用一下两种get()方法…
当spark跑在yarn上时 单个executor执行时,数据量过大时会导致executor的memory不足而使得rdd  最后lost,最终导致任务执行失败 其中会抛出如图异常信息 如图中异常所示 对应解决方法可以加上对应的参数调优(这个配置可以在总的处理数据量在几百TB或者1~3PB级别的数据处理时解决executor-memory不足问题) --num-executors=512 --executor-cores=8 --executor-memory=32g --driver-memo…
本文由  网易云发布. 2017 年,Kubernetes 超越 Mesos 和 Docker Swarm成为最受欢迎的容器编排技术.网易云从 2015 下半年开始向 Kubernetes 社区贡献代码,是国内最早的 Kubernetes 实践者和贡献者,并已经成为 CNCF(云原生计算基金会)官方授权的 CloudNative Meetup 主办方.本文将简单介绍下网易云基于 Kubernetes 的深度定制化实践. 1 网易云容器服务的架构 网易云容器服务基于网易云 IaaS.为了简化用户操…
排序实现有N种形式,最低成本.最快响应时间是目标 一份索引,支持N种排序策略并且在线互不干扰是要考虑的每一种实现,处理的场景是不同的,不要千篇一律 020排序,从索引到效果,有不少坑,这篇文章没有细说,原因是有些内容不好公开   几点基础概念回顾 (1)排序定制化不同于实现业务排序.       实现业务排序可以是查阶段,通过boost.各种func 组合.离线score等单独或者组合实现排序目标,        或者索引构建阶段的 field boost.document boost     …
基于Xv6-OS 分析CR0 寄存器 之前一直认为晕乎乎的...啥?什么时候切换real model,怎么切换,为什么要切换? ------------------------------------------------------------------------------------------------------------------------------------------- 以下这段代码来自Xv6的boot/boot.S 这就是CPU real model 和 pr…