Decision Tree such as C4.5 is easy to parallel. Following is an example. This is a non-parallel version: public void learnFromDataSet(Iterable<Sample<FK, FV, Boolean>> dataset){ for(Sample sample : dataset){ model.addSample((MapBasedBinarySamp…
使用的Decision Tree中,对MNIST中的灰度值进行了0/1处理,方便来进行分类和计算熵. 使用较少的测试数据测试了在对灰度值进行多分类的情况下,分类结果的正确率如何.实验结果如下. #Test change pixel data into more categories than 0/1:#int(pixel)/50: 37%#int(pixel)/64: 45.9%#int(pixel)/96: 52.3%#int(pixel)/128: 62.48%#int(pixel)/152…
DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4581651.html 本例是Sklearn网站上的关于决策树桩.决策树.和分别使用AdaBoost—SAMME和AdaBoost—SAMME.R的AdaBoost算法在分类上的错误率.这个例子基于Sklearn.datasets里面的make_Hastie_10_2数据库.取了12000个数据,其…