Spark Streaming核心概念与编程】的更多相关文章

Spark Streaming核心概念与编程 1. 核心概念 StreamingContext Create StreamingContext import org.apache.spark._ import org.apache.spark.streaming._ val conf = new SparkConf().setAppName(appName).setMaster(master) //Second(1) #表示处理的批次, 当前1秒处理一次 val ssc = new Stream…
Spark系列-初体验(数据准备篇) Spark系列-核心概念 一. Spark核心概念 Master,也就是架构图中的Cluster Manager.Spark的Master和Workder节点分别Hadoop的NameNode和DataNode相似,是一种主从结构.Master是集群的领导者,负责协调和管理集群内的所有资源(接收调度和向WorkerNode发送指令).从大类上来分Master分为local和cluster两大类 local:也就是本地模式,所有计算都在一台服务器上完成,通常用…
收录待用,修改转载已取得腾讯云授权 作者 | 蒋专 蒋专,现CDG事业群社交与效果广告部微信广告中心业务逻辑组员工,负责广告系统后台开发,2012年上海同济大学软件学院本科毕业,曾在百度凤巢工作三年,2016年入职微信广告中心. 导语 spark 已经成为广告.报表以及推荐系统等大数据计算场景中首选系统,因效率高,易用以及通用性越来越得到大家的青睐,我自己最近半年在接触spark以及spark streaming之后,对spark技术的使用有一些自己的经验积累以及心得体会,在此分享给大家. 本文…
为了更好地理解Spark Streaming 子框架的处理机制,必须得要自己弄清楚这些最基本概念. 1.离散流(Discretized Stream,DStream):这是Spark Streaming对内部持续的实时数据流的抽象描述,即我们处理的一个实时数据流,在Spark Streaming中对应于一个DStream的实例. 2.批数据(batch data):这是化整为零的第一步,将实时流数据以时间片为单位进行分批,将流处理转换为时间片数据的批处理.随着持续时间的推移,这些处理结果就形成了…
在学习spark streaming时,建议先学习和掌握RDD.spark streaming无非是针对流式数据处理这个场景,在RDD基础上做了一层封装,简化流式数据处理过程. spark streaming 引入一些新的概念和方法,本文将介绍这方面的知识.主要包括以下几点: 初始化流上下文 Discretized Streams离散数据流 Input DStreams and Receivers Transformations on DStreams Output Operations on…
铭文一级: 第八章:Spark Streaming进阶与案例实战 updateStateByKey算子需求:统计到目前为止累积出现的单词的个数(需要保持住以前的状态) java.lang.IllegalArgumentException: requirement failed: The checkpoint directory has not been set. Please set it by StreamingContext.checkpoint(). 需求:将统计结果写入到MySQLcre…
铭文一级: 核心概念:StreamingContext def this(sparkContext: SparkContext, batchDuration: Duration) = { this(sparkContext, null, batchDuration)} def this(conf: SparkConf, batchDuration: Duration) = { this(StreamingContext.createNewSparkContext(conf), null, bat…
Spark Streaming学习笔记 liunx系统的习惯创建hadoop用户在hadoop根目录(/home/hadoop)上创建如下目录app 存放所有软件的安装目录 app/tmp 存放临时文件 data 存放测试数据lib 存放开发用的jar包software 存放软件安装包的目录source 存放框架源码 hadoop生态系统 CDH5.7.x地址:http://archive.cloudera.com/cdh5/cdh/5/ 需求:统计主站每个课程访问的客户端,地域信息分布地域:i…
Overview A Quick Example Basic Concepts Linking Initializing StreamingContext Discretized Streams (DStreams) Input DStreams and Receivers Transformations on DStreams Output Operations on DStreams DataFrame and SQL Operations MLlib Operations Caching…
Spark 1.5.2 Spark Streaming 学习笔记和编程练习 Overview 概述 Spark Streaming is an extension of the core Spark API that enables scalable, high-throughput, fault-tolerant stream processing of live data streams. Data can be ingested from many sources like Kafka,…