本篇文章的介绍了一个非常简单的门限RNN(gated recurrent neural network), 这里有两扇门horizontal/forget gate和vertical/input gate, 即 其中 (logistic sigmoid function) 下面假设输入数据xt满足如下性质, 若隐层节点初始化为0, 即,则网络对脉冲xt的响应为, 其中衰减到0, forget gate控制了衰减速度,所以当隐层节点ht(i)遇到比较强的信号,ht(i)被激活,接着衰减到0,直到下…