MapReduce实现WordCount】的更多相关文章

Java编程MapReduce实现WordCount 1.编写Mapper package net.toocruel.yarn.mapreduce.wordcount; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; import java.util.St…
1,eclipse安装hadoop插件 插件下载地址:链接: https://pan.baidu.com/s/1U4_6kLFNiKeLsGfO7ahXew 提取码: as9e 下载hadoop-eclipse-plugin-2.7.3.jar包,放入eclipse路径下(本人eclipse版本为eclipse mars,路径为C:\Users\Administrator\.p2\pool\plugins,其他版本可直接放入eclipse安装路径下的plugin) 2,安装hadoop到本地,并…
package algorithm; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; //前两个参数是固…
Hadoop研发在java环境的拓展 一 背景 由于一直使用hadoop streaming形式编写mapreduce程序,所以目前的hadoop程序局限于python语言.下面为了拓展java语言研发,本次实验使用window系统,maven打包,centos系统mapr环境运行. 二 步骤 1 查看hadoop版本,命令 Hadoop version,获得版本号hadoop2.7.0 2 编写pow文件,注意hadoop2.7依赖, <dependency> <groupId>…
之前习惯用hadoop streaming环境编写python程序,下面总结编辑java的eclipse环境配置总结,及一个WordCount例子运行. 一 下载eclipse安装包及hadoop插件 1去官网下载linux版本的eclipse安装包(或者在本人为了大家方便下载,上传到了csdn下载,网址: 2下载插件:hadoop-eclipse-plugin-2.6.0.jar 二 安装elicpse及hadoop插件 1 把eclipse解压到路径 /user/local/eclipse…
1.程序代码 Map: import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.util.StringUtils; public…
将文件split 文件1:                                                                   分割结果: hello  world                                                   <0, "hello world"> this is wordcount                                           <12,&quo…
目录: 目录见文章1 这个案列完成对单词的计数,重写map,与reduce方法,完成对mapreduce的理解. Mapreduce初析 Mapreduce是一个计算框架,既然是做计算的框架,那么表现形式就是有个输入(input),mapreduce操作这个输入(input),通过本身定义好的计算模型,得到一个输出(output),这个输出就是我们所需要的结果. 我们要学习的就是这个计算模型的运行规则.在运行一个mapreduce计算任务时候,任务过程被分为两个阶段:map阶段和reduce阶段…
上一章我们编写了简单的 MapReduce 程序,掌握这些就能编写大多数数据处理的代码.但是 MapReduce 框架提供给用户的能力并不止如此,本章我们仍然以上一章 word count 为例,继续完善我们的数据处理代码.本章主要关注的重点包括三个部分: 1. 完整的 map / reduce 任务,完整的 map 任务除了 map 方法里的逻辑外,还包括任务运行前的准备工作以及任务结束后的清理工作,reduce 任务也一样 2. Counter 的作用,有时候为了统计程序运行中任务的状态,比…
上一章我们搭建了分布式的 Hadoop 集群.本章我们介绍 Hadoop 框架中的一个核心模块 - MapReduce.MapReduce 是并行计算模块,顾名思义,它包含两个主要的阶段,map 阶段和 reduce 阶段.每个阶段输入和输出都是键值对.map 阶段主要是对输入的原始数据做处理,按照 key-value 形式输出数据,输出的数据按照key是有序的.reduce 阶段的输入是 map 任务的输出,会对输入的数据会按照 key 做归并排序,使得输入 reduce 任务输入的 key…