解决问题的方案 Hadoop上的中文分词与词频统计实践 首先来推荐相关材料:http://xiaoxia.org/2011/12/18/map-reduce-program-of-rmm-word-count-on-hadoop/.小虾的这个统计武侠小说人名热度的段子很有意思,照虎画猫来实践一下. 与其不同的地方有: 0)其使用Hadoop Streaming,这里使用MapReduce框架. 1)不同的中文分词方法,这里使用IKAnalyzer,主页在http://code.google.co…
# -*- coding: UTF-8 -*- import sys import numpy as np import pandas as pd import jieba import jieba.analyse import codecs #设置pd的显示长度 pd.set_option('max_colwidth',500) #载入数据 rows=pd.read_csv('datas1.csv', header=0,encoding='utf-8',dtype=str) #载入停用词 ji…
以下代码对鲁迅的<祝福>进行了词频统计: import io import jieba txt = io.open("zhufu.txt", "r", encoding='utf-8').read() words = jieba.lcut(txt) counts = {} for word in words: if len(word) == 1: continue else: counts[word] = counts.get(word,0) + 1 i…
上文已经介绍了基于词典的中文分词,现在让我们来看一下基于统计的中文分词. 统计分词: 统计分词的主要思想是把每个词看做是由字组成的,如果相连的字在不同文本中出现的次数越多,就证明这段相连的字很有可能就是一个词. 统计分词一般做如下两步操作: 1.建立统计语言模型(n-gram) 2.对句子进行单词划分,然后对划分结果做概率计算,获取概率最大的分词方式.这里就用到了统计学习算法,如隐马尔科夫模型(HMM),条件随机场(CRF)等 语言模型: 语言模型在信息检索,机器翻译,语音识别中承担着重要的任务…
mapreduce的处理过程分为2个阶段,map阶段,和reduce阶段.在要求统计指定文件里的全部单词的出现次数时. map阶段把每一个关键词写到一行上以逗号进行分隔.并初始化数量为1(同样的单词hadoop中的map会自己主动放到一行中) reduce阶段是把每一个单词出现的频率统计出来又一次写回去. 如代码: package com.clq.hadoop2; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.…
import pandas as pd import jieba import jieba.analyse from collections import Counter,OrderedDict jieba.load_userdict('./userdict.txt') # 加载外部 用户词典 def stopwordslist(filepath): stopwords = [line.strip() for line in open(filepath, 'r', encoding='utf-8…
一.摘要 结合dsp_builder.matlab.modelsim和quartus ii等软件完成算法的FPGA实现. 二.实验平台 硬件平台:DIY_DE2 软件平台:quartus ii9.0 + ModelSim-Altera 6.4a (Quartus II 9.0) + dsp_builder9.0 + matlab2010b 三.软件平台的准备 1.软件的匹配 根据altera的官方文档,可以看到quartus ii.modelsim.dsp_builder和matlab的版本匹配…
背景:分析用户在世界杯期间讨论最多的话题. 思路:把用户关于世界杯的帖子拉下来.然后做中文分词+词频统计,最后将统计结果简单做个标签云.效果例如以下: 兴许:中文分词是中文信息处理的基础.分词之后.事实上还有特别多有趣的文本挖掘工作能够做.也是个知识发现的过程,以后有机会再学习下. ================================================== * 中文分词经常使用实现: 单机:R语言+Rwordseg分词包 (建议数据量<1G) 分布式:Hadoop+Sm…
一.环境 1.python3.6 2.windows系统 3.安装第三方模块 pip install wordcloud #词云展示库 pip install jieba #结巴分词 pip install matplotlib #图像展示库 二.需求 统计article.txt里的文章的词频 三.代码 import collections #词库统计库,自带模块 import re #正则表达式 自带模块 import wordcloud #词云展示库,pip install wordclou…
1.利用jieba分词,排除停用词stopword之后,对文章中的词进行词频统计,并用matplotlib进行直方图展示 # coding: utf-8 import codecs import matplotlib.pyplot as plt import jieba # import sys # reload(sys) # sys.setdefaultencoding('utf-8') from pylab import mpl mpl.rcParams['font.sans-serif']…