MATLAB常见的学习率下降策略】的更多相关文章

MATLAB常见的学习率下降策略 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 几种常见的学习率下降策略(learning rate decay strategy) t:自变量,迭代次数,λ(t):因变量,学习率,T:常量,最大迭代次数,其他参数均为常量,可自行设定.可以设定初始学习率λ(0): 1) exp 2) inv 3) plot 4) sigmoid 5) cosine_decay 6) Gaussian 2. MATLAB程序 fun…
学习率是深度学习训练中至关重要的参数,很多时候一个合适的学习率才能发挥出模型的较大潜力.所以学习率调整策略同样至关重要,这篇博客介绍一下Pytorch中常见的学习率调整方法. import torch import numpy as np from torch.optim import SGD from torch.optim import lr_scheduler from torch.nn.parameter import Parameter model = [Parameter(torch…
线性回归: 注:为偏置项,这一项的x的值假设为[1,1,1,1,1....] 注:为使似然函数越大,则需要最小二乘法函数越小越好 线性回归中为什么选用平方和作为误差函数?假设模型结果与测量值 误差满足,均值为0的高斯分布,即正态分布.这个假设是靠谱的,符合一般客观统计规律.若使 模型与测量数据最接近,那么其概率积就最大.概率积,就是概率密度函数的连续积,这样,就形成了一个最大似然函数估计.对最大似然函数估计进行推导,就得出了推导后结果: 平方和最小公式 注: 1.x的平方等于x的转置乘以x. 2…
原文地址: https://blog.csdn.net/shanglianlm/article/details/85143614 -------------------------------------------------------------------------------- PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现.PyTorch提供的学习率调整策略分为三大类,分别是 a. 有序调整:等间隔调整(Step),按需调整学习率(Mult…
通常为了模型能更好的收敛,随着训练的进行,希望能够减小学习率,以使得模型能够更好地收敛,找到loss最低的那个点. tensorflow中提供了多种学习率的调整方式.在https://www.tensorflow.org/api_docs/python/tf/compat/v1/train搜索decay.可以看到有多种学习率的衰减策略. cosine_decay exponential_decay inverse_time_decay linear_cosine_decay natural_ex…
PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现.PyTorch提供的学习率调整策略分为三大类,分别是 有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和 余弦退火CosineAnnealing. 自适应调整:自适应调整学习率 ReduceLROnPlateau. 自定义调整:自定义调整学习率 LambdaLR. 等间隔调整学习率 StepLR 等间隔调整学习率,调整倍数为 gamma 倍,调整…
学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoch数进行学习率衰减. 举例说明: # lr = 0.05 if epoch < 30 # lr = 0.005 if 30 <= epoch < 60 # lr = 0.0005 if 60 <= epoch < 90 在上述例子中,每30个epochs衰减十倍学习率. 计算公式…
神经网络训练过程中,根据每batch训练数据前向传播的结果,计算损失函数,再由损失函数根据梯度下降法更新每一个网络参数,在参数更新过程中使用到一个学习率(learning rate),用来定义每次参数更新的幅度. 过小的学习率会降低网络优化的速度,增加训练时间,过大的学习率可能导致网络参数在最终的极优值两侧来回摆动,导致网络不能收敛.实践中证明有效的方法是设置一个根据迭代次数衰减的学习率,可以兼顾训练效率和后期的稳定性. 分段常数衰减 分段常数衰减是在事先定义好的训练次数区间上,设置不同的学习率…
还是这本书上的内容,不过我看演化计算这一章是倒着看的,这里练习的算法正好和书中介绍的顺序是相反的. 演化策略是最古老的的演化算法之一,和上一篇DE算法类似,都是基于种群的随机演化产生最优解的算法. 算法步骤如下: 1.设定种群个体数和需要迭代的次数.2.选择父代中的个体按照公式z1=sqrt(-2*ln(u1))*sin(2*pi*u2)*m,z2=sqrt(-2*ln(u1))*cos(2*pi*u2)*m进行演化. 这里u1,u2都是随机值,m是控制因子,演化次数越多m,m越小,父代通过与z…
可以新建一个.m文件,将代码放入其中 1.求平均 A=[ 1 2; 3 4; ] a=mean(A,1) %按列平均 b=mean(A,2) %按行平均 c=mean(A(:)) %全部平均 2.清屏 clc 3.执行.m文件 直接输入文件名即可,不需要后缀 4.赋值时不显示过程 在句子末尾加分号 5.取矩阵A的第一列 A(:,1) %  :  表示所有的行 6.绘制图 x = [1  2  3];l y = [5  4  2]; scatter(x, y, '.');  %散点图 plot(x…