十一,专著研读(CART算法)】的更多相关文章

十一,专著研读(CART算法) CART称为分类回归树,既能用于分类也能用于回归.使用二元切分方法处理连续型变量,给定特定值,如果特征值大于给定值就走左子树,否则走右子树. CART算法步骤 决策树生成:递归构建二叉决策树过程,生成的决策树要尽可能大,自上而下从根开始建立节点,在节点处选择最好的属性来分裂,使子节点中的训练集尽量的"钝". 决策树剪枝:用验证数据集对已生成的树进行剪枝并选择最优子树,损失函数最小作为剪枝标准. Gini指数计算 CART算法中用Gini指数来衡量数据的不…
四,专著研读(K-近邻算法) K-近邻算法有监督学习距离类模型, k-近邻算法步骤 计算已知类别数据集中的点与当前点之间的距离 按照距离递增的次序进行排序 选取与当前点距离最小的K个点 确定前k个点出现频率 返回前k个点出现频率最高的类别作为当前点的预测类别 欧氏距离 \(dist\left ( x,y \right )=\sqrt{\left ( x_{1}-y_{1} \right )^{2}+\left ( x_{2}-y_{2} \right )^{2}+...+\left ( x_{n…
七,专著研读(Logistic回归) 分类:k-近邻算法,决策树,朴素贝叶斯,Logistic回归,支持向量机,AdaBoost算法. 运用 k-近邻算法,使用距离计算来实现分类 决策树,构建直观的树来分类 朴素贝叶斯,使用概率论构建分类器 Logistic回归,主要是通过寻找最优参数来正确分类原始数据 逻辑回归(Logistic Regression):虽然名字中有"回归"两个字,但是它擅长处理分类问题.LR分类器适用于各项广义上的分类任务,例如:评论信息的正负情感分析,用户点击率,…
1. 1.问题的引入 2.一个实例 3.基本概念 4.ID3 5.C4.5 6.CART 7.随机森林 2. 我们应该设计什么的算法,使得计算机对贷款申请人员的申请信息自动进行分类,以决定能否贷款? 一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话: 女儿:多大年纪了? 母亲:26. 女儿:长的帅不帅? 母亲:挺帅的. 女儿:收入高不? 母亲:不算很高,中等情况. 女儿:是公务员不? 母亲:是,在税务局上班呢. 女儿:那好,我去见见. 决策过程: 这个女孩的决策过程就是典型的分类树决策.…
决策树模型在监督学习中非常常见,可用于分类(二分类.多分类)和回归.虽然将多棵弱决策树的Bagging.Random Forest.Boosting等tree ensembel 模型更为常见,但是“完全生长”决策树因为其简单直观,具有很强的解释性,也有广泛的应用,而且决策树是tree ensemble 的基础,值得好好理解.一般而言一棵“完全生长”的决策树包含,特征选择.决策树构建.剪枝三个过程,这篇文章主要是简单梳理比较ID3.C4.5.CART算法.<统计学习方法>中有比较详细的介绍. 一…
常见的一种决策树算法是ID3,ID3的做法是每次选择当前最佳的特征来分割数据,并按照该特征所有可能取值来切分,也就是说,如果一个特征有四种取值,那么数据将被切分成4份,一旦按某特征切分后,该特征在之后的算法执行过程中将不会在起作用,这种切分方法比较迅速,但是一个比较明显的缺点是不能直接处理连续型的特征,只有事先将连续型的数据转换成离散型才能再ID3算法中使用. CART(Classification And Regression Tree)算法采用一种二分递归分割的技术,将当前的样本集分为两个子…
本文来自<机器学习实战>(Peter Harrington)第九章"树回归"部分,代码使用python3.5,并在jupyter notebook环境中测试通过,推荐clone仓库后run cell all就可以了. github地址:https://github.com/gshtime/machinelearning-in-action-python3 转载请标明原文链接 1 原理 CART(Classification and Regression Trees,分类回归…
CART(Classification And Regression Tree),分类回归树,,决策树可以分为ID3算法,C4.5算法,和CART算法.ID3算法,C4.5算法可以生成二叉树或者多叉树,CART只支持二叉树,既可支持分类树,又可以作为回归树. 分类树: 基于数据判断某物或者某人的某种属性(个人理解)可以处理离散数据,就是有限的数据,输出样本的类别 回归树: 给定了数据,预测具体事物的某个值:可以对连续型的数据进行预测,也就是数据在某个区间内都有取值的可能,它输出的是一个数值 CA…
本文主要总结决策树中的ID3,C4.5和CART算法,各种算法的特点,并对比了各种算法的不同点. 决策树:是一种基本的分类和回归方法.在分类问题中,是基于特征对实例进行分类.既可以认为是if-then规则的集合,也可以认为是定义在特征空间和类空间上的条件概率分布. 决策树模型:决策树由结点和有向边组成.结点一般有两种类型,一种是内部结点,一种是叶节点.内部结点一般表示一个特征,而叶节点表示一个类.当用决策树进行分类时,先从根节点开始,对实例的某一特征进行测试,根据测试结果,将实例分配到子结点.而…
CART生成 CART假设决策树是二叉树,内部结点特征的取值为“是”和“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支.这样的决策树等价于递归地二分每个特征,将输入空间即特征空间划分为有限个单元,并在这些单元上确定预测的概率分布,也就是在输入给定的条件下输出的条件概率分布. CART算法由以下两步组成: 决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大: 决策树剪枝:用验证数据集对已生成的树进行剪枝并选择最优子树,这时损失函数最小作为剪枝的标准. CART决策树的生成就是…