tf.nn.in_top_k组要是用于计算预测的结果和实际结果的是否相等,返回一个bool类型的张量,tf.nn.in_top_k(prediction, target, K):prediction就是表示你预测的结果,大小就是预测样本的数量乘以输出的维度,类型是tf.float32等.target就是实际样本类别的标签,大小就是样本数量的个数.K表示每个样本的预测结果的前K个最大的数里面是否含有target中的值.一般都是取1. 例如: import tensorflow as tf; A =…
import tensorflow as tf; A = [[0.8,0.6,0.3], [0.1,0.6,0.4],[0.5,0.1,0.9]] B = [0,2,1] out = tf.nn.in_top_k(A, B, 2) with tf.Session() as sess: sess.run(tf.initialize_all_variables()) print(sess.run(out)) tf.nn.in_top_k组要是用于计算预测的结果和实际结果的是否相等,返回一个bool类…
tf.nn.embedding_lookup函数的用法主要是选取一个张量里面索引对应的元素.tf.nn.embedding_lookup(tensor, id):tensor就是输入张量,id就是张量对应的索引,其他的参数不介绍. 例如: import tensorflow as tf; import numpy as np; c = np.random.random([10,1]) b = tf.nn.embedding_lookup(c, [1, 3]) with tf.Session()…