关于adaboost分类器】的更多相关文章

<FAQ:OpenCV Haartraining>——使用OpenCV训练Haar like+Adaboost分类器的常见问题 最近使用OpenCV训练Haar like+Adaboost分类器,查阅了一些资料,这些资料对训练过程陈述的很详细,但是缺少一些细节,偶然看到了一篇英文资料,觉得很好,简单翻译了自己觉得有用的部分. 原文链接:FAQ:OpenCV Haartraining 关于正样本图片 1.I have  positive images, how create vec file o…
上一篇文章中介绍了如何使用OpenCV自带的haar分类器进行人脸识别(点我打开). 这次我试着自己去训练一个haar分类器,前后花了两天,最后总算是训练完了.不过效果并不是特别理想,由于我是在自己的笔记本上进行训练,为减少训练时间我的样本量不是很大,最后也只是勉强看看效果了.网上有关的资料和博客可以说很多了,只要耐心点总是能成功的. 采集样本: 首先要训练,就得有训练集.网上有很多国外高校开源的库可供下载: 1.卡耐基梅隆大学图像数据库(点我打开) 2.MIT人脸数据库(点我打开) 3.ORL…
重点分析了Adaboost它的分类结构,以及如何使用Adaboost.这一节课讲解Adaboost分类器它训练的步骤以及训练好之后的XML文件的文件结构.所以这节课的核心是Adaboost分类器它的训练.如何来训练一个Adaboost分类器呢? 第一步,完成初始化数据的权值分布.正常情况下初始化的权值分布是需要一个计算公式来进行计算的.第一次进行初始化权值分布,所有的权值必须要相等,这是第一步的过程. 第二步,权值分布好之后,那么遍历判决阈值.把所有的阈值全部遍历一下,这样的话会计算出一系列的误…
如何利用特征来区分目标,进行阈值判决.adaboost分类器它的优点在于前一个基本分类器分出的样本,在下一个分类器中会得到加强.加强后全体的样本那么再次进行整个训练.加强后的全体样本再次被用来训练下一个基本的分类器. 我们正确的样本它的系数逐渐地减小,而我们的负样本得到了加强.这就是adaboost它的优点.它的优点就是能够自适应这种过程.它能够把每一次检测中出错的负样本进行加强,那么再把整个结果算到下一个基本的分类器中.那么一轮一轮不停地循环.所以这里还有一个问题,叫循环的终止条件或者叫训练的…
我花了将近一周的时间,才算搞懂了adaboost的原理.这根骨头终究还是被我啃下来了. Adaboost是boosting系的解决方案,类似的是bagging系,bagging系是另外一个话题,还没有深入研究.Adaboost是boosting系非常流行的算法.但凡是介绍boosting的书籍无不介绍Adaboosting,也是因为其学习效果很好. Adaboost首先要建立一个概念: 弱分类器,也成为基础分类器,就是分类能力不是特别强,正确概率略高于50%的那种,比如只有一层的决策树.boos…
前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的方式有多种,可能是不同分类算法的分类器,可能是同一算法在不同设置下的集成,还可以是数据集在不同部分分配给不同分类器之后的集成等等. 本文将给出的 AdaBoost 分类器实现基于第二种 (另外几种实现在此基础上稍作改动即可). 一种原始的元算法 - bagging (自举汇聚法) 这个算法的意思有点像投票系统…
前言 有人认为 AdaBoost 是最好的监督学习的方式. 某种程度上因为它是元算法,也就是说它会是几种分类器的组合.这就好比对于一个问题能够咨询多个 "专家" 的意见了. 组合的方式有多种,可能是不同分类算法的分类器,可能是同一算法在不同设置下的集成,还可以是数据集在不同部分分配给不同分类器之后的集成等等. 本文将给出的 AdaBoost 分类器实现基于第二种 (另外几种实现在此基础上稍作改动即可). 一种原始的元算法 - bagging (自举汇聚法) 这个算法的意思有点像投票系统…
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第7章 - 利用AdaBoost元算法提高分类性能. 核心思想 在使用某个特定的算法是,有时会发现生成的算法\(f(x)\)的错误率比较高,只使用这个算法达不到要求. 这时\(f(x)\)就是一个弱算法. 在以前学习算法的过程中,我们认识到算法的参数很重要,所以把公式改写成这样: \[ f(x,arguments) \\ where \\ \qquad x \text{ : calculated…
在上一篇文章中,我介绍了<训练自己的haar-like特征分类器并识别物体>的前两个步骤: 1.准备训练样本图片,包括正例及反例样本 2.生成样本描述文件 3.训练样本 4.目标识别 ================= 今天我们将着重学习第3步:基于haar特征的adaboost级联分类器的训练.若将本步骤看做一个系统,则输入为正样本的描述文件(.vec)以及负样本的说明文件(.dat):输出为分类器配置参数文件(.xml). 老规矩,先介绍一下这篇文章需要的工具,分别是(1)训练用的open…
Real Adaboost分类器是对经典Adaboost分类器的扩展和提升,经典Adaboost分类器的每个弱分类器仅输出{1,0}或{+1,-1},分类能力较弱,Real Adaboost的每个弱分类器输出的是一个实数值(这也是为什么叫“Real”),可以认为是一个置信度.和LUT(look-up table)结合之后,表达复杂函数的能力比经典Adaboost更强. 接下来分三部分,第一部分解释经典Adaboost,第二部分解释Real Adaboost,第三部分举例说明 一.经典Adaboo…