解压文件命令: with zipfile.ZipFile('../data/kaggle_cifar10/' + fin, 'r') as zin: zin.extractall('../data/kaggle_cifar10/') 拷贝文件命令: shutil.copy(原文件, 目标文件) 一.整理数据 我们有两个文件夹'../data/kaggle_cifar10/train'和'../data/kaggle_cifar10/test',一个记录了文件名和类别的索引文件 我们的目的是在新的…
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下 在前面的例子中,基本上都是将每一层的输出直接作为下一层的输入,这种网络称为前馈传播网络(feedforward neural network).对于此类网络如果每次都写复杂的forward函数会有些麻烦,在此就有两种简化方式,ModuleList和Sequential.其中Sequential是一个特殊的module,它包含几个子Module,前向传播时…
部分代码单独测试: 这里实践了图像大小调整的代码,值得注意的是格式问题: 输入输出图像时一定要使用uint8编码, 但是数据处理过程中TF会自动把编码方式调整为float32,所以输入时没问题,输出时要手动转换回来!使用numpy.asarray(dtype)或者tf.image.convert_image_dtype(dtype)都行 都行 1 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt…
MXNet是基础,Gluon是封装,两者犹如TensorFlow和Keras,不过得益于动态图机制,两者交互比TensorFlow和Keras要方便得多,其基础操作和pytorch极为相似,但是方便不少,有pytorch基础入门会很简单.注意和TensorFlow不同,MXNet的图片维度是 batch x channel x height x width . MXNet的API主要分为3层,最基础的时mxnet.ndarray(NDArray API),它以近似numpy数组的形式记录了诸多基…
上节用了Sequential类来构造模型.这里我们另外一种基于Block类的模型构造方法,它让构造模型更加灵活,也将让你能更好的理解Sequential的运行机制. 回顾: 序列模型生成 层填充 初始化模型参数 net = gluon.nn.Sequential() with net.name_scope(): net.add(gluon.nn.Dense(1)) net.collect_params().initialize(mx.init.Normal(sigma=1)) # 模型参数初始化…
参考:http://www.jianshu.com/p/5ae644748f21# 几个数学概念: 标量(Scalar)是只有大小,没有方向的量,如1,2,3等 向量(Vector)是有大小和方向的量,其实就是一串数字,如(1,2) 矩阵(Matrix)是好几个向量拍成一排合并而成的一堆数字,如[1,2;3,4] 其实标量,向量,矩阵它们三个也是张量,标量是零维的张量,向量是一维的张量,矩阵是二维的张量,除此之外,张量不仅可以是三维的,还可以是四维的.五维的... 一点小注意: 1.由于torc…
Step1: 目标: 使用线性模拟器模拟指定的直线:y = 0.1*x + 0.3 代码: import tensorflow as tf import numpy as np import matplotlib.pyplot as plt def show_data(x,y,w,b): ''' 绘图函数 :param x: 横坐标散点 :param y: 纵坐标散点 :param w: 权重 :param b: 偏移量 :return: 无 ''' plt.figure() plt.scatt…
对比TensorFlow和Pytorch的动静态图构建上的差异 静态图框架设计好了不能够修改,且定义静态图时需要使用新的特殊语法,这也意味着图设定时无法使用if.while.for-loop等结构,而是需要特殊的由框架专门设计的语法,在构建图时,我们需要考虑到所有的情况(即各个if分支图结构必须全部在图中,即使不一定会在每一次运行时使用到),使得静态图异常庞大占用过多显存. 以动态图没有这个顾虑,它兼容python的各种逻辑控制语法,最终创建的图取决于每次运行时的条件分支选择,下面我们对比一下T…
MXNet文档 MXNet官方教程 持久化模型 框架介绍 『MXNet』第一弹_基础架构及API 『MXNet』第二弹_Gluon构建模型 『MXNet』第三弹_Gluon模型参数 『MXNet』第四弹_Gluon自定义层 『MXNet』第五弹_MXNet.image图像处理 『MXNet』第六弹_Gluon性能提升 『MXNet』第七弹_多GPU并行程序设计 『MXNet』第八弹_数据处理API_上 『MXNet』第九弹_分类器以及迁移学习DEMO 『MXNet』第十弹_物体检测SSD 『MX…
『PyTorch』第二弹_张量 Tensor基础操作 简单的初始化 import torch as t Tensor基础操作 # 构建张量空间,不初始化 x = t.Tensor(5,3) x -2.4365e-20 -1.4335e-03 -2.4290e+25 -1.0283e-13 -2.8296e-07 -2.0769e+22 -1.3816e-33 -6.4672e-32 1.4497e-32 1.6020e-19 6.2625e+22 4.7428e+30 4.0095e-08 1.…