EM算法之不同的推导方法和自己的理解 一.前言 EM算法主要针对概率生成模型解决具有隐变量的混合模型的参数估计问题. 对于简单的模型,根据极大似然估计的方法可以直接得到解析解:可以在具有隐变量的复杂模型中,用MLE很难直接得到解析解,此时EM算法就发挥作用了. E步解决隐变量的问题,M步求解模型的参数值,也就是极大似然的方法求取模型的参数值. 自己的理解:走一步看一步,走了看,看了再走,迭代过程. 首先使用估计的方式直接设置一组模型的参数值,这组模型的参数值是先验的,甚至可以说是我们瞎设的,这么…
前篇已经对EM过程,举了扔硬币和高斯分布等案例来直观认识了, 目标是参数估计, 分为 E-step 和 M-step, 不断循环, 直到收敛则求出了近似的估计参数, 不多说了, 本篇不说栗子, 直接来推导一波. Jensen 不等式 在满足: 一个 concave 函数, 即 形状为 "\(\bigcap\)" 的函数 \(f(x)\) \(\lambda_j \ge 0\) \(\sum \limits _j \lambda_j = 1\) 类似于随机变量的分布 的前提条件下, 则有…
Jensen不等式 http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html 回顾优化理论中的一些概念.设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数.当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数.如果或者,那么称f是严格凸函数. Jensen不等式表述如下: 如果f是凸函数,X是随机变量,那么 特别地,如果f是严格凸函数,那么当且仅当,也就是说X是常量. 这里我们将简写为. 似然…
极大似然估计,只是一种概率论在统计学的应用,它是参数估计的方法之一.说的是已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值.      我们先来假设这样一个问题:要求解人群(100人)中男女身高的分布,这里很明显有两种分布,男和女,但是事先我们并不知道他们服从哪种分布,而且…
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(LatentVariable).最大期望经常用在机器学习和计算机视觉的数据聚类(DataClustering)领域.最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值:第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值.M步上找到的参数估计值被用于下一个E步计算中…
原文地址:https://www.cnblogs.com/to-creat/p/6075322.html 机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简…
转自http://blog.csdn.net/zouxy09/article/details/8537620/ 机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为…
EM 算法所面对的问题跟之前的不一样,要复杂一些. EM 算法所用的概率模型,既含有观测变量,又含有隐变量.如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或贝叶斯估计法来估计模型参数,但是,当模型含有隐变量时,情况就复杂一些,相当于一个双层的概率模型,要估计出两层的模型参数,就需要换种方法求解.EM 算法是通过迭代的方法求解. 监督学习是由训练数据 {(x(1),y(1)),(x(2),y(2)),...,(x(m),y(m))} 学习条件概率分布 P(Y|X) 或决策…
机器学习十大算法之一:EM算法.能评得上十大之一,让人听起来觉得挺NB的.什么是NB啊,我们一般说某个人很NB,是因为他能解决一些别人解决不了的问题.神为什么是神,因为神能做很多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是因为什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明白,但是,EM这个问题感觉真的不太好用通俗的语言去说明白,因为它很简单,又很复杂.简单在于它的思想,简单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学推理涉及到比…
1 EM算法的引入1.1 EM算法1.2 EM算法的导出2 EM算法的收敛性3EM算法在高斯混合模型的应用3.1 高斯混合模型Gaussian misture model3.2 GMM中参数估计的EM算法4 EM推广4.1 F函数的极大-极大算法 期望极大值算法(expectation maximizition algorithm,EM).是一种迭代算法,1977年由Dempster总结提出,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计或极大后验估计.EM算法分为…
EM算法理解的九层境界 EM 就是 E + M EM 是一种局部下限构造 K-Means是一种Hard EM算法 从EM 到 广义EM 广义EM的一个特例是VBEM 广义EM的另一个特例是WS算法 广义EM的再一个特例是Gibbs抽样算法 WS算法是VAE和GAN组合的简化版 KL距离的统一 第一层境界, EM算法就是E 期望 + M 最大化 最经典的例子就是抛3个硬币,跑I硬币决定C1和C2,然后抛C1或者C2决定正反面, 然后估算3个硬币的正反面概率值. &a…
今天不太想学习,炒个冷饭,讲讲机器学习十大算法里有名的EM算法,文章里面有些个人理解,如有错漏,还请读者不吝赐教. 众所周知,极大似然估计是一种应用很广泛的参数估计方法.例如我手头有一些东北人的身高的数据,又知道身高的概率模型是高斯分布,那么利用极大化似然函数的方法可以估计出高斯分布的两个参数,均值和方差.这个方法基本上所有概率课本上都会讲,我这就不多说了,不清楚的请百度. 然而现在我面临的是这种情况,我手上的数据是四川人和东北人的身高合集,然而对于其中具体的每一个数据,并没有标定出它来自“东北…
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算法,其重要性可见一斑. EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计.它与极大似然估计的区别就是它在迭代过程中依赖极大似然估计方法.极大似然估计是在模型已知的情况下,求解模型的参数$\theta$,让抽样出现的概率最大.类似于求解一元方…
EM算法推导 网上和书上有关于EM算法的推导,都比较复杂,不便于记忆,这里给出一个更加简短的推导,用于备忘. 在不包含隐变量的情况下,我们求最大似然的时候只需要进行求导使导函数等于0,求出参数即可.但是包含隐变量,直接求导就变得异常复杂,此时需要EM算法,首先求出隐变量的期望值(E步),然后,把隐变量当中常数,按照不包含隐变量的求解最大似然的方法解出参数(M步),反复迭代,最终收敛到局部最优.下面给出EM算法的推导 我们有对数似然函数 \[ L(\theta)=\log P(y|\theta)…
EM算法(Expectation-maximization),又称最大期望算法,是一种迭代算法,用于含有隐变量的概率模型参数的极大似然估计(或极大后验概率估计) 从定义可知,该算法是用来估计参数的,这里约定参数为  .既然是迭代算法,那么肯定有一个初始值,记为  ,然后再通过算法计算  通常,当模型的变量都是观测变量时,可以直接通过极大似然估计法,或者贝叶斯估计法估计模型参数.但是当模型包含隐变量时,就不能简单的使用这些估计方法 举个具体的栗子: 永远在你身后:Matplotlib输出动画实现K…
EM算法是一种迭代算法,传说中的上帝算法,俗人可望不可及.用以含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计 EM算法定义 输入:观测变量数据X,隐变量数据Z,联合分布\(P(X,Z|\theta)\) 输出:模型参数\(\theta\) (1)选择初始模型参数\(\theta^{(0)}\),开始迭代 (2)E步:记\(\theta^{i}\)为第i次迭代参数\(\theta\)的估计值,计算在第i次迭代的期望\[Q(\theta,\theta^{(i)}) = E(logP(x,…
EM算法 Jensen不等式 其实Jensen不等式正是我们熟知的convex函数和concave函数性质,对于convex函数,有 \[ \lambda f(x) + (1-\lambda)f(y)\ge f(\lambda x + (1-\lambda)f(y)),\ where\ 0\le\lambda\le 1 \] 推广一下,便有 \[ f(\sum_{i=1}^n\lambda_ix_i)\le\sum_{i=1}^n\lambda_if(x_i),\ where \sum_{i=1…
I. 牛顿迭代法给定一个复杂的非线性函数f(x),希望求它的最小值,我们一般可以这样做,假定它足够光滑,那么它的最小值也就是它的极小值点,满足f′(x0)=0,然后可以转化为求方程f′(x)=0的根了.非线性方程的根我们有个牛顿法,所以 然而,这种做法脱离了几何意义,不能让我们窥探到更多的秘密.我们宁可使用如下的思路:在y=f(x)的x=xn这一点处,我们可以用一条近似的曲线来逼近原函数,如果近似的曲线容易求最小值,那么我们就可以用这个近似的曲线求得的最小值,来近似代替原来曲线的最小值: 显然,…
EM算法总结 - The EM Algorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用到了.在Mitchell的书中也提到EM可以用于贝叶斯网络中. 下面主要介绍EM的整个推导过程. 1. Jensen不等式 回顾优化理论中的一些概念.设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数.当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数.如果或者,那…
原创博客,转载请注明出处 Leavingseason http://www.cnblogs.com/sylvanas2012/p/5053798.html EM框架是一种求解最大似然概率估计的方法.往往用在存在隐藏变量的问题上.我这里特意用"框架"来称呼它,是因为EM算法不像一些常见的机器学习算法例如logistic regression, decision tree,只要把数据的输入输出格式固定了,直接调用工具包就可以使用.可以概括为一个两步骤的框架: E-step:估计隐藏变量的概…
GMM及EM算法 标签(空格分隔): 机器学习 前言: EM(Exception Maximizition) -- 期望最大化算法,用于含有隐变量的概率模型参数的极大似然估计: GMM(Gaussian Mixture Model) -- 高斯混合模型,是一种多个高斯分布混合在一起的模型,主要应用EM算法估计其参数: 本篇博客首先从简单的k-means算法给出EM算法的迭代形式,然后用GMM的求解过程给出EM算法的宏观认识:最后给出EM的标准形式,并分析EM算法为什么收敛. K-Means Cl…
# coding:utf-8 import numpy as np def qq(y,alpha,mu,sigma,K,gama):#计算Q函数 gsum=[] n=len(y) for k in range(K): gsum.append(np.sum([gama[j,k] for j in range(n)])) return np.sum([g*np.log(ak) for g,ak in zip(gsum,alpha)])+\ np.sum([[np.sum(gama[j,k]*(np.…
一. 扯淡 转眼间毕业快一年了,这期间混了两份工作,从游戏开发到算法.感觉自己还是喜欢算法,可能是大学混了几年算法吧!所以不想浪费基础... 我是个懒得写博客的人,混了几年coding,写的博客不超过10篇.现在参加工作,必须得改掉懒的坏习惯,以后多尝试写写,好总结总结,也方便以后复习用. 二.算法 1. 前言 1.1 EM会涉及一些数学知识,比如最大似然估计和Jensen不等式等知识,这些知识最烦了,动不动就一堆推导公式,看着就觉得蛋疼,经过它讲的原理比较简单,多以在此略过. 1.2 本文的侧…
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系列样本,Logistic回归问题属于监督型学习问题,样本中含有训练的特征以及标签,在Logistic回归的参数求解中,通过构造样本属于类别和类别的概率: 这样便能得到Logistic回归的属于不同类别的概率函数: 此时,使用极大似然估计便能够估计出模型中的参数.但是,如果此时的标签是未知的,称为隐变…
EM算法 作者:樱花猪   摘要: 本文为七月算法(julyedu.com)12月机器学习第十次次课在线笔记.EM算法全称为Expectation Maximization Algorithm,既最大期望算法.它是一种迭代的算法,用于含有隐变量的概率参数模型的最大似然估计和极大后验概率估计.EM算法经常用于机器学习和机器视觉的聚类领域,是一个非常重要的算法.而EM算法本身从使用上来讲并不算难,但是如果需要真正的理解则需要许多知识的相互串联. 引言:      EM算法是机器学习十大经典算法之一.…
从最大似然到EM算法浅解 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习十大算法之中的一个:EM算法.能评得上十大之中的一个,让人听起来认为挺NB的.什么是NB啊,我们一般说某个人非常NB,是由于他能解决一些别人解决不了的问题.神为什么是神,由于神能做非常多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是由于什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明确,可是,EM这个问题感觉真的不太好用通俗的…
文本主题模型之LDA(一) LDA基础 文本主题模型之LDA(二) LDA求解之Gibbs采样算法 文本主题模型之LDA(三) LDA求解之变分推断EM算法 本文是LDA主题模型的第三篇,读这一篇之前建议先读文本主题模型之LDA(一) LDA基础,同时由于使用了EM算法,如果你对EM算法不熟悉,建议先熟悉EM算法的主要思想.LDA的变分推断EM算法求解,应用于Spark MLlib和Scikit-learn的LDA算法实现,因此值得好好理解. 1. 变分推断EM算法求解LDA的思路 首先,回顾L…
EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断等等.本文就对EM算法的原理做一个总结. 1. EM算法要解决的问题 我们经常会从样本观察数据中,找出样本的模型参数. 最常用的方法就是极大化模型分布的对数似然函数. 但是在一些情况下,我们得到的观察数据有未观察到的隐含数据,此时我们未知的有隐含数据和模型参数,因而无法直接用极大化对数似然函数得到模型分布的参数.…
注:本文是对<统计学习方法>EM算法的一个简单总结. 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量.如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了.EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法. 2. EM 算法的一个小例子:三硬币模型 假设有3枚硬币,记作A,B,C.这些硬币的正面出现的概率分别为\(\pi\).\…
解决含有隐变量的问题有三种方法,其中第三种方法就是通常所说的em算法.下面以统计学习方法中给出的三硬币问题为例来分别描述这三种方法.(a,b,c三硬币抛出来为正的概率分别为pai,p,q,每轮抛硬币先抛a硬币,a为正则抛b硬币,a为反则抛c硬币.把b硬币或者c硬币的结果(正或反)作为最终结果,即样观测值.) 第一种方法: 现在我们只知道样本的观测值集合,我们可以以每一个样本观测值(例如y1=1)为一个单位单独考察.在这种方法之下,我们并不关注pai的值是多少,即抛出a为正的概率,只关注与该样本观…