本文主要做了两件事,一是提出了一种使用C4.5算法生成的决策树来识别密文所使用的加密算法的方法,二是为这一算法设计了一个特征提取系统提取八个特征作为算法的输入,最终实现了70%~75的准确率. 准备工作 通过分析各式各样的密文,作者发现密文都是由乱码(符号).字母(大小写)和数字组成的,然后利用这些信息的熵.最大熵等构建决策树. 整个过程分为训练阶段和测试阶段.训练阶段的目标是创建一个分类模型,包括特征提取和分类两个过程.测试阶段包括特征提取和识别两个过程,是利用训练阶段训练好的模型进行加密算法…
Decision Tree算法的思路是,将原始问题不断递归地细分为子问题,直到子问题直接可获得答案为止.在模型训练的过程中,根据训练集去做树的生长(Grow the tree),生长所有可能的Branches,最终达到叶子节点(leaf nodes).在预测过程中,则遍历树枝,去寻找和预测目标最相近的叶子. 构建决策树模型: 而在构建过程中的主要问题是,选择数据集的哪个feature来做分割.这里用到了Greedy Search.形象地说,每走一步,都选择当前情况下最好的路径,而不管下一步如何或…
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或random forest也是常以其为基础的 决策树算法本身参考之前的blog,其实就是贪婪算法,每次切分使得数据变得最为有序   那么如何来定义有序或无序? 无序,node impurity 对于分类问题,我们可以用熵entropy或Gini来表示信息的无序程度 对于回归问题,我们用方差Variance…
DisCrete Versus Real AdaBoost 关于Discrete 和Real AdaBoost 可以参考博客:http://www.cnblogs.com/jcchen1987/p/4581651.html 本例是Sklearn网站上的关于决策树桩.决策树.和分别使用AdaBoost—SAMME和AdaBoost—SAMME.R的AdaBoost算法在分类上的错误率.这个例子基于Sklearn.datasets里面的make_Hastie_10_2数据库.取了12000个数据,其…
来自OpenCV2.3.1 sample/c/mushroom.cpp 1.首先读入agaricus-lepiota.data的训练样本. 样本中第一项是e或p代表有毒或无毒的标志位:其他是特征,可以把每个样本看做一个特征向量: cvSeqPush( seq, el_ptr );读入序列seq中,每一项都存储一个样本即特征向量: 之后,把特征向量与标志位分别读入CvMat* data与CvMat* reponses中 还有一个CvMat* missing保留丢失位当前小于0位置: 2.训练样本…
Decision Tree:Analysis 大家有没有玩过猜猜看(Twenty Questions)的游戏?我在心里想一件物体,你可以用一些问题来确定我心里想的这个物体:如是不是植物?是否会飞?能游泳不?当你问完这些问题后,你就能得到这个物体的特征,然后猜出我心里想象的那个物体,看是否正确. 这个游戏很简单,但是蕴含的思想却是质朴的.每个问题都会将范围减少,直到特征显现,内蕴的思想就是Decision Tree算法.判定树(Decision Tree)算法是机器学习中很重要的一种算法,有文章声…
一.CART分类与回归树 资料转载: http://dataunion.org/5771.html        Classification And Regression Tree(CART)是决策树的一种,并且是非常重要的决策树,属于Top Ten Machine Learning Algorithm.顾名思义,CART算法既可以用于创建分类树(Classification Tree),也可以用于创建回归树(Regression Tree).模型树(Model Tree),两者在建树的过程稍…
Roadmap Decision Tree Hypothesis Decision Tree Algorithm Decision Tree Heuristics in C&RT Decision Tree in Action Summary…
Roadmap Decision Tree Hypothesis Decision Tree Algorithm Decision Tree Heuristics in C&RT Decision Tree in Action Summary…
[ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支. 一棵决策树的组成:根节点.非叶子节点(决策点).叶子节点.分支 算法分为两个步骤:1. 训练阶段(建模) 2. 分类阶段(应用) 熵的概念 设用P(X)代表X发生的概率,H(X)代表X发生的不确定性,则有:P(X)越大,H(X)越小:P(X)越小,H(X)越大. 信息熵的一句话解释是:消除不确定性的程度…