Pytorch-索引与切片】的更多相关文章

常见的学习种类 线性回归,最简单的y=wx+b型的,就像是调节音量大小.逻辑回归,是否问题.分类问题,是猫是狗是猪 最简单的线性回归y=wx+b 目的:给定大量的(x,y)坐标点,通过机器学习来找出最符合的权重w和偏置b 损失指的是每个点进行wx+b-y然后平方累加,是用来估量模型的预测值f(x)与真实值Y的不一致程度. 根本的方法是首先要给出人工设定初始的w和b值,然后计算损失对于w和对于b的梯度,来找到下降梯度. 使得w和b往下降梯度变化来使得损失越来越小,w和b的值越来越精确的过程. lr…
索引和切片 一维数组 一维数组很简单,基本和列表一致. 它们的区别在于数组切片是原始数组视图(这就意味着,如果做任何修改,原始都会跟着更改). 这也意味着,如果不想更改原始数组,我们需要进行显式的复制,从而得到它的副本(.copy()). import numpy as np #导入numpy arr = np.arange(10) #类似于list的range() arr Out[3]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) arr[4] #索引(注意是从…
Python 中原生的数组就支持使用方括号([])进行索引和切片操作,Numpy 自然不会放过这个强大的特性.  单个元素索引 1-D数组的单元素索引是人们期望的.它的工作原理与其他标准Python序列一样.它是从0开始的,并且接受负索引来从数组的结尾进行索引. import numpy as np a = np.arange(10) a Out[130]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) a[3] Out[131]: 3 a[-2] Out[132]…
一.实验文档准备 1.安装 tushare pip install tushare 2.启动ipython C:\Users\Administrator>ipython Python 3.7.0 (default, Jun 28 2018, 08:04:48) [MSC v.1912 64 bit (AMD64)] Type 'copyright', 'credits' or 'license' for more information IPython 7.0.1 -- An enhanced…
1.一维数组索引与切片#创建一维数组arr1d = np.arange(10)print(arr1d) 结果:[0 1 2 3 4 5 6 7 8 9] #数组的索引从0开始,通过索引获取第三个元素arr1d[2] 结果:2 #切片,左闭右开区间,从索引3开始,直到索引7结束 arr1d[3:8] 结果:array([3, 4, 5, 6, 7]) #数组脚标由右往左是从-1开始,每向左一位脚标数字减1,获取最后一个元素arr1d[-1] #等价arr1d[9] 结果:9 #将标量赋值给切片,会…
一:数据类型 1):int     1,2,3用于计算 2):bool    ture  false  用于判断,也可做为if的条件 3):str     用引号引起来的都是str 存储少量数据,进行操作 4):list   储存大量数据.[1,2,3,‘达人’,[1,2,3,90]] 5):元组   (1,2,3,‘第三方’)元组又叫只读列表,不能修改. 6):字典:dict,大量关系型的数据写在字典里 字典{‘name’:’li’,’age’=’12’} 字典{‘li’:[身高,体重,‘张三…
目录 (一)数组的索引与切片 1.说明: 2.实例: (二)多维数组的索引与切片 1.说明: 2.实例: 目录: 1.一维数组的索引与切片 2.多维数组的索引与切片 (一)数组的索引与切片 1.说明: (1)索引:array[x] (1)从左到右: 0~ n-1, 第一个到最后一个 (2)从右到左:-1~ -n,最后一个到第一个 (2)切片:array[起:终:步长] 在python里数据的切片都不包括"终"的数据 2.实例: (二)多维数组的索引与切片 1.说明: (1)索引: 在一…
NumPy学习(索引和切片,合并,分割,copy与deep copy) 目录 索引和切片 合并 分割 copy与deep copy 索引和切片 通过索引和切片可以访问以及修改数组元素的值 一维数组 程序示例 import numpy as np #索引与切片 array=np.arange(3,15) print(array) print(array[3])#数组下标为3的元素 print('\n') print(array[1:3])#取从下标1到下标3,不包括下标3 print(array[…
1. 编码 1. 最早的计算机编码是ASCII. 美国人创建的. 包含了英文字母(大写字母, 小写字母). 数字, 标点等特殊字符!@#$% 128个码位 2**7 在此基础上加了一位 2**8 8位. 1个字节(byte) 2. GBK 国标码 16位. 2个字节(双字节字符) 3. unicode 万国码 32位, 4个字节 4. utf-8: 英文 8 bit 1个字节 欧洲文字 16bit 2个字节 中文 24bit 3个字节 8bit => 1 byte 1024 byte = >…
numpy基本的索引和切片 import numpy as np arr = np.array([1,2,3,555,666,888,10]) arr array([ 1, 2, 3, 555, 666, 888, 10]) # 数组的切片是不会复制,任何视图上的修改都会直接修改源数组 arr[1:5] array([ 2, 3, 555, 666]) # 广播 将一个标量赋值给一个切片时,自动传播到整个选区 arr[1:5] = 12 # 源数据改变 arr array([ 1, 12, 12…