机器学习 - 算法 - SVM 支持向量机】的更多相关文章

SVM 原理引入 支持向量机( SVM,Support Vector Machine ) 背景 2012年前较为火热, 但是在12年后被神经网络逼宫, 由于应用场景以及应用算法的不同, SVM还是需要有所了解,而且在面试中SVM一般都会问到, 支持向量机是一个非常 经典且高效的分类模型 要解决的问题 如下图所示,3条黑色的线都可以将两边的数据进行分类, 那哪条线作为决策边界才是最好的呢? 如果特征数据本身就很难分,那又怎么办呢? 计算复杂度怎么样?能否实际应用? 决策边界定义 两边雷区, 要选择…
SVM 代码实现展示 相关模块引入 %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy import stats import seaborn as sns;sns.set() # 使用seaborn的默认设置 数据集 这里自己生成一些随机数据 #随机来点数据 from sklearn.datasets.samples_generator import make_blobs X, y =…
Svm算法又称为支持向量机,是一种有监督的学习分类算法,目的是为了找到两个支持点,用来使得平面到达这两个支持点的距离最近. 通俗的说:找到一条直线,使得离该线最近的点与该线的距离最远. 我使用手写进行了推导 求解实例 软间隔,通过设置C,使得目标函数的松弛因子发生变化,松弛因子越大,表示分类越不严格 高斯核变化做映射,指的是把低维转换成高维,解决低维不可分的情况…
一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的分类算法.关于它的发展历史,直接引用Wikipedia中的,毕竟本文主要介绍它的推导过程,而不是历史发展. The original SVM algorithm was invented by Vladimir N. Vapnik and Alexey Ya. Chervonenkis in 196…
SVM是新近出现的强大的数据挖掘工具,它在文本分类.手写文字识别.图像分类.生物序列分析等实际应用中表现出非常好的性能.SVM属于监督学习算法,样本以属性向量的形式提供,所以输入空间是Rn的子集. 图1 如图1所示,SVM的目标是找到两个间距尽可能大的边界平面来把样本本点分开,以”最小化泛化误差“,即对新的样本点进行分类预测时,出错的几率最小.落在边界平面上的点称为支持向量.Vapnik证明如果可以找到一个较小的支持向量集,就可以保证得到很好的泛化能力----也就是说支持向量的个数越少越好. 数…
svm小结 1.超平面 两种颜色的点分别代表两个类别,红颜色的线表示一个可行的超平面.在进行分类的时候,我们将数据点  x 代入  f(x)  中,如果得到的结果小于 0 ,则赋予其类别 -1 ,如果大于 0 则赋予类别 1 .如果  f(x)=0 ,则很难办了,分到哪一类都不是.事实上,对于  f(x)  的绝对值很小的情况,我们都很难处理,因为细微的变动(比如超平面稍微转一个小角度)就有可能导致结果类别的改变.理想情况下,我们希望  f(x)  的值都是很大的正数或者很小的负数,这样我们就能…
支持向量机需要解决的问题:找出一条最好的决策边界将两种类型的点进行分开 这个时候我们需要考虑一个问题,在找到一条直线将两种点分开时,是否具有其他的约束条件,这里我们在满足找到一条决策边界时,同时使得距离边界最近的点到边界的距离最远,对于下图而言,我们可以看出右边的图比左边的图的分类效果要好,因为点到边界的距离较大,这样得到的决策边界具有较好的泛化能力. SVR的求解过程 首先我们需要写出点到直线或者平面的距离,这里以平面为例 我们需要求得的是dist(x, h)即x点到平面的距离,我们x首先在平…
1.不平衡数据分类问题 对于非平衡级分类超平面,使用不平衡SVC找出最优分类超平面,基本的思想是,我们先找到一个普通的分类超平面,自动进行校正,求出最优的分类超平面 测试代码如下: import numpy as npimport matplotlib.pyplot as pltfrom sklearn import svmrng = np.random.RandomState(0)n_samples_1 = 1000n_samples_2 = 100X = np.r_[1.5 * rng.ra…
支持向量机是一个点离决策边界越近,离决策面越远的问题 求解的过程主要是通过拉格朗日乘子法,来求解带约束的优化问题,在问题中涉及两个方面,一个是线性的,一个是非线性的,非线性的有 我们平时比较常见的高斯核函数(径向基函数),他的主要做法就是把低维的数据变成高维数据,通过^2的方法 在支持向量基中的参数有 svc__C(松弛因子)和svc__gamma 两个参数,两个参数越大,模型的复杂度也越大 接下来我们使用一组人脸数据来进行模型,我们会进行参数调节 第一步数据载入 from sklearn.da…
前言            以下内容是个人学习之后的感悟,转载请注明出处~ 简介 支持向量机(support vector machine),简称SVM,通俗来讲,它是一种二类分类模型,其基本模型定义为特 征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. 原理 SVM代价函数 支持向量机的代价函数和逻辑回归的代价函数十分相似,因为前者可以从后者中衍化出来.如下图所示,其实,支 持向量机的代价函数只是把逻辑回归的代价函数里的项进行了项替换(这里是相似…