tensorflow真是一个我绕不开的坑(苍天饶过谁.jpg) 其实tensorflow1和2的差别挺大的,暂时从1入坑,2的话之后简单过一下. tf2中更改的函数(供参考):https://docs.google.com/spreadsheets/d/1FLFJLzg7WNP6JHODX5q8BDgptKafq_slHpnHVbJIteQ/edit#gid=0 本文仅记录我的踩坑历程. 参考文献:https://www.datacamp.com/community/tutorials/tens…
http://blog.csdn.net/Jerr__y/article/details/70471066 欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @creat_date: 2017-04-19 前言 本例子主要介绍如何使用 TensorFlow 来一步一步构建双端 LSTM 网络(听名字就感觉好腻害的样子),并完成序列标注的问题.先声明一下,本文中采用的方法主要参考了[中文分词系列] 4. 基于双向LSTM的seq2seq字标注这篇文章.该文章用…
TensorFlow入门 张量(tensor) Tensorflow中的主要数据单元是张量(tensor), 一个张量包含了一组基本数据,可以是列多维数据.一个张量的"等级"(rank)就是它的维度数字.下面是一些张量例子: 3 # 等级(rank)为0的张量;它是一个标量,形态是[] [1., 2., 3.] # 等级为1的张量:它是一个向量,形态是[3] [[1., 2., 3.], [4., 5., 6.]] # 等级为2的张量:它是一个矩阵,形态是[2,3] [[[1., 2.…
关于TensorFlow读取数据,官网给出了三种方法: 供给数据(Feeding):在TensorFlow程序运行的每一步,让python代码来供给数据. 从文件读取数据:在TensorFlow图的起始,让一个输入管线从文件中读取数据. 预加载数据:在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况). 对于数据量较小而言,可能一般选择直接将数据加载进内存,然后再分batch输入网络进行训练(tip:使用这种方法时,结合yeild 使用更为简洁).但是如果数据量较…
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…
我们经常要从外部数据源(如数据库.文本文件或网页等)将数据导入excel中,但是此类数据往往比较混乱,无法满足我们的要求,因此在进行数据分析之前,需要将这些数据进行整理清洗,excel由于将数据的管理和展示都在同一层面上,并且其函数功能也不逊色,因此在大多数情况下都可以使用excel来进行初步的数据整理: 1.删除通用前导字符串(例如其后紧跟冒号和空格的标签)或后缀(例如字符串后面的已无效或不必要的插入语),在字符串内查找和替换子字符串.提取字符串的特定部分或确定字符串的长度等字符串操作,可使用…
    TensorFlow 入门 本文转自:http://www.jianshu.com/p/6766fbcd43b9 字数3303 阅读904 评论3 喜欢5 CS224d-Day 2: 在 Day 1 里,先了解了一下 NLP 和 DP 的主要概念,对它们有了一个大体的印象,用向量去表示研究对象,用神经网络去学习,用 TensorFlow 去训练模型,基本的模型和算法包括 word2vec,softmax,RNN,LSTM,GRU,CNN,大型数据的 seq2seq,还有未来比较火热的研究…
tensorflow入门(1) 关于 TensorFlow TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor).它灵活的架构让你可以在多种平台上展开计算,例如台式计算机中的一个或多个CPU(或GPU),服务器,移动设备等等.TensorFlow 最初由Google大脑小组(隶属于Google机器智能研究机构)的研究员和工程…
欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @creat_date: 2017-03-09 前言: 根据我本人学习 TensorFlow 实现 LSTM 的经历,发现网上虽然也有不少教程,其中很多都是根据官方给出的例子,用多层 LSTM 来实现 PTBModel 语言模型,比如: tensorflow笔记:多层LSTM代码分析 但是感觉这些例子还是太复杂了,所以这里写了个比较简单的版本,虽然不优雅,但是还是比较容易理解. 如果你想了解 LSTM 的原理的…
在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlow实战这本书中给出了更好的实现,他将程序分为三个模块,分别是前向传播过程模块,训练模块和验证检测模块.并且在这个版本中添加了模型持久化功能,我们可以将模型保存下来,方便之后的模型检验,并且我们可以一边训练新的模型,一边来检验模型,代码更加的灵活高效. 前向传播模块 首先将前向传播过程抽象出来,作为一个可以作为…
在上一篇<TensorFlow入门之MNIST样例代码分析>中,我们讲解了如果来用一个三层全连接网络实现手写数字识别.但是在实际运用中我们需要更有效率,更加灵活的代码.在TensorFlow实战这本书中给出了更好的实现,他将程序分为三个模块,分别是前向传播过程模块,训练模块和验证检测模块.并且在这个版本中添加了模型持久化功能,我们可以将模型保存下来,方便之后的模型检验,并且我们可以一边训练新的模型,一边来检验模型,代码更加的灵活高效. 前向传播模块 首先将前向传播过程抽象出来,作为一个可以作为…
TensorFlow 入门之手写识别(MNIST) 数据处理 一 MNIST Fly softmax回归 准备数据 解压 与 重构 手写识别入门 MNIST手写数据集 图片以及标签的数据格式处理 准备数据 MNIST是在机器学习领域中的一个经典问题.该问题解决的是把28x28像素的灰度手写数字图片识别为相应的数字,其中数字的范围从0到9. from IPython.display import Image  import base64  Image(data=base64.decodestrin…
一.官方网站:https://threejs.org 二.关于Three.js 三.开始 四.实例 基本结构 结果 五.概念 坐标系 场景 相机 灯光 3D模型 六.简单动画 七.交互控制 结束 # Three入门学习笔记整理 # 一.官方网站:https://threejs.org 二.关于Three.js WebGL是大部分浏览器直接支持的一种3D绘图标准,它可以创建二维图形和应用,还可以充分利用GPU,创建漂亮的.高性能的三维应用.直接使用WebGL非常复杂,Three.js库提供了一套基…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu  tf.nn.…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/weixin_36380516/article/details/78668199上一篇介绍了使用jsp完成数据的页面展示 ,但是springboot并不推荐使用jsp,会产生很多问题.官方推荐使用thymeleaf,这里我们将上一篇的jsp页面展示修改为使用thymeleaf,通过对比来熟悉thymeleaf,其实改动的地方并不大. 第一篇…
利用 TensorFlow 入门 Word2Vec 原创 2017-10-14 chen_h coderpai 博客地址:http://www.jianshu.com/p/4e16ae0aad25 或者点击阅读原文 我认为学习算法的最好方法就是尝试去实现它,因此这个教程我们就来学习如何利用 TensorFlow 来实现词嵌入. 这篇文章我们不会去过多的介绍一些词向量的内容,所以很多 king - man - woman - queue 的例子会被省去,直接进入编码实践过程. 我们如何设计这些词嵌…
这次评教的所有数据存放在两个数据库中,比如说给某教师评论的学生有100个,可是结果有40个的数据在数据库A中,另外60人的数据在数据库B中.那么,如何将两个库中的数据整合,最后得到教师的准确成绩成为了本次数据整理的首要任务.具体的整合过程是这样的,就拿教师的最终得分来说吧.假设库A学生给教师评价的平均分为90分,而库 B学生评价的平均分为95分.那么首先需要分别计算出库A.库B中学生评价的总分,库A总分 = 90*40 ,库B总分 = 95*60,教师所得总平均分 = (库A总分 + 库B总分)…
TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST flyu6 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算法 我们知道MNIST的每一张图片都表示一个数字,从0到9.我们希望得到给定图片代表每个数字的概率.比如说,我们的模型可能推测一张包含9的图片代表数字9的概率是80%但是判断它是8的概率是5%(因为8和9都有上半部分的小圆),然后给予它代表其他数字的概率更小的值. 这是一个使用softmax回归(s…
手头现在有一份福布斯2016年全球上市企业2000强排行榜的数据,但原始数据并不规范,需要处理后才能进一步使用. 本文通过实例操作来介绍用pandas进行数据整理. 照例先说下我的运行环境,如下: windows 7, 64位 python 3.5 pandas 0.19.2版本 在拿到原始数据后,我们先来看看数据的情况,并思考下我们需要什么样的数据结果. 下面是原始数据: 在本文中,我们需要以下的初步结果,以供以后继续使用. 可以看到,原始数据中,跟企业相关的数据中(“Sales”,“Prof…
FaceRank,最有趣的 TensorFlow 入门实战项目 TensorFlow 从观望到入门! https://github.com/fendouai/FaceRank 最有趣? 机器学习是不是很无聊,用来用去都是识别字体.能不能帮我找到颜值高的妹子,顺便提高一下姿势水平. FaceRank 基于 TensorFlow CNN 模型,提供了一些图片处理的工具集,后续还会提供训练好的模型.给 FaceRank 一个妹子,他给你个分数. 从此以后筛选简历,先把头像颜值低的去掉:自动寻找女主颜值…
微信小程序给我们提供了一个很好的开发平台,可以用于展现各种数据和实现丰富的功能,本篇随笔介绍微信小程序结合后台数据管理实现商品数据的动态展示.维护,介绍如何实现商品数据在后台管理系统中的维护管理,并通过小程序的请求Web API 平台获取JSON数据在小程序界面上进行动态展示. 1.整体性的架构设计 我们整体性的架构设计,包含一个Web管理后台.一个Web API统一接口层.当然还有数据库什么,另外还有一个小程序客户端.整个架构体系还是以我之前随笔介绍的<整合微信小程序的Web API接口层的架…
目录 [第一篇]ASP.NET MVC快速入门之数据库操作(MVC5+EF6) [第二篇]ASP.NET MVC快速入门之数据注解(MVC5+EF6) [第三篇]ASP.NET MVC快速入门之安全策略(MVC5+EF6) [第四篇]ASP.NET MVC快速入门之完整示例(MVC5+EF6) [番外篇]ASP.NET MVC快速入门之免费jQuery控件库(MVC5+EF6) 请关注三石的博客:http://cnblogs.com/sanshi 数据库连接字符串 上一篇文章中,我们使用MVC的…
React 入门学习笔记整理(一)--搭建环境 React 入门学习笔记整理(二)-- JSX简介与语法 React 入门学习笔记整理(三)-- 组件 React 入门学习笔记整理(四)-- 事件 React 入门学习笔记整理(五)-- state React 入门学习笔记整理(六)-- 组件通信 React 入门学习笔记整理(七)-- 生命周期 React 入门学习笔记整理(八)-- todoList React 入门学习笔记整理(九)--路由…
TensorFlow入门,基本介绍,基本概念,计算图,pip安装,helloworld示例,实现简单的神经网络…
spring-mvc实现模拟数据到网页展示过程代码 先看看我们的3种模拟数据到网页展示的思路图: 1.当mybatis的环境配置完成.一个动态Web项目建立好.开始导入jar包. -spring的aop,aspects,context,beans,core,expression,jdbc,tx,web,webmvc jar包导入 -log4j 核心包2个 -aopjar包:aopaliance-1.0jar,aspectjweaver-1.8.10jar -jstl.jar,standard.j…
name/variable_scope 的作用 欢迎转载,但请务必注明原文出处及作者信息. @author: huangyongye @creat_date: 2017-03-08 refer to: Sharing Variables name / variable_scope 详细理解请看: TensorFlow入门(七) 充分理解 name / variable_scope * 起因:在运行 RNN LSTM 实例代码的时候出现 ValueError. * 在 TensorFlow 中,经…
TensorFlow入门教程之0: BigPicture&极速入门 TensorFlow入门教程之1: 基本概念以及理解 TensorFlow入门教程之2: 安装和使用 TensorFlow入门教程之3: CNN卷积神经网络的基本定义理解 TensorFlow入门教程之4: 实现一个自创的CNN卷积神经网络 TensorFlow入门教程之5: TensorBoard面板可视化管理 TensorFlow入门教程之6: AlphaGo 的策略网络(CNN)简单的实现 TensorFlow入门教程之7…
安装好TensorFlow之后,开一个python环境,就可以开始运行和使用TensorFlow了. 先给一个实例, #先导入TensorFlow import tensorflow as tf hello_constant = tf.constant('Hello World!') # Create TensorFlow object called hello_constant with tf.Session() as sess: output = sess.run(hello_constan…
------------------------------------ 写在开头:此文参照莫烦python教程(墙裂推荐!!!) ------------------------------------ TensorFlow入门笔记之基础架构 1 构建简单神经网络:一维线性预测 #导入相关库 import tensorflow as tf import numpy as np #用随机数生成x x_data = np.random.rand(100).astype(np.float32) #生…
TensorFlow 入门之手写识别CNN 三 MNIST 卷积神经网络 Fly 多层卷积网络 多层卷积网络的基本理论 构建一个多层卷积网络 权值初始化 卷积和池化 第一层卷积 第二层卷积 密集层连接 Dropout 输出层 训练和评估模型 多层卷积网络 多层卷积网络的基本理论 卷积神经网络(Convolutional Neural Network,CNN) 是一种前馈神经网络, 它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现.它包括卷积层(alternating…