首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
5.3.3 自定义writable和RawComparatorWritable
】的更多相关文章
自定义Writable、RawComparatorWritable、comparators(转)
自定义Writable hadoop虽然已经实现了一些非常有用的Writable,而且你可以使用他们的组合做很多事情,但是如果你想构造一些更加复杂的结果,你可以自定义Writable来达到你的目的,我们以注释的方式对自定义Writable进行讲解(不许说我只帖代码占篇幅哦,姿势写在注释里了): package com.sweetop.styhadoop; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableC…
5.3.3 自定义writable和RawComparatorWritable
5.3.3 自定义writable (1)构造员工writable Hadoop虽然已经实现了一些非常有用的Writable,而且你可以使用他们的组合做很多事情,但是如果你想构造一些更加复杂的结果,你可以自定义Writable来达到你的目的,例如员工writable有姓名和角色两个Text属性构成,需要对员工writable姓名和角色同时进行比较排序.定义类实现WritableComparable接口,.实现构造函数.属性getset函数,readfield和write函数.compareTo函…
读取SequenceFile中自定义Writable类型值
1)hadoop允许程序员创建自定义的数据类型,如果是key则必须要继承WritableComparable,因为key要参与排序,而value只需要继承Writable就可以了.以下定义一个DoubleArrayWritable,继承自ArrayWritable.代码如下: package matrix; import org.apache.hadoop.io.*; public class DoubleArrayWritable extends ArrayWritable { public…
Hadoop Serialization -- hadoop序列化详解 (3)【ObjectWritable,集合Writable以及自定义的Writable】
前瞻:本文介绍ObjectWritable,集合Writable以及自定义的Writable TextPair 回顾: 前面了解到hadoop本身支持java的基本类型的序列化,并且提供相应的包装实现类: 这并不是包含了所有的java数据类型,比如我们要序列化的对象是Object类型的,或者是常用的集合类型list,map那该怎么办呢? 别怕,我们hadoop也提供相应的序列化实现,可以轻松的面对这样的问题. ObjectWritable ,GenericWritable ObjectWrit…
自定义排序及Hadoop序列化
自定义排序 将两列数据进行排序,第一列按照升序排列,当第一列相同时,第二列升序排列. 在map和reduce阶段进行排序时,比较的是k2.v2是不参与排序比较的.如果要想让v2也进行排序,需要把k2和v2组装成新的类,作为k2,才能参与比较. package sort; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.net.URI; import org.a…
MapReduce实例-倒排索引
环境: Hadoop1.x,CentOS6.5,三台虚拟机搭建的模拟分布式环境 数据:任意数量.格式的文本文件(我用的四个.java代码文件) 方案目标: 根据提供的文本文件,提取出每个单词在哪个文件中出现了几次,组成倒排索引,格式如下 Ant FaultyWordCount.java : 1 , WordCount.java : 1 思路: 因为这个程序需要用到三个变量:单词.文件名.出现的频率,因此需要自定义Writable类,以单词为key,将文件名和出现的频率打包. 1.先将每行文本的单…
重新认识mapreduce
写这篇文章,是因为最近遇到了mapreduce的二次排序问题.以前的理解不完全正确.首先看一下mapreduce的过程 相信这张图熟悉MR的人都应该见过,再来一张图 wordcount也不细说了,hadoop里面的hello,world 之前我的理解是map过来的<k,v>会形成(k,<v1,v2,v3...>)的格式,并且按照这种思路写出来不少的mapreduce程序,而且没有错. 后来自定义Writable对象,封装一组值作为key,也没有什么问题,而且一直认为key只要在co…
[大牛翻译系列]Hadoop(13)MapReduce 性能调优:优化洗牌(shuffle)和排序阶段
6.4.3 优化洗牌(shuffle)和排序阶段 洗牌和排序阶段都很耗费资源.洗牌需要在map和reduce任务之间传输数据,会导致过大的网络消耗.排序和合并操作的消耗也是很显著的.这一节将介绍一系列的技术来缓解洗牌和排序阶段的消耗. 技术46 规避使用reduce Reduce在用于连接数据集的时候将会产生大量的网络消耗. 问题 需要考虑在MapReduce规避reduce的使用. 方案 通过将MapReduce参数setNumReduceTasks设置为0来创建一个只有map的作业. 讨论…
一站式Hadoop&Spark云计算分布式大数据和Android&HTML5移动互联网解决方案课程(Hadoop、Spark、Android、HTML5)V2的第一门课程
Hadoop是云计算的事实标准软件框架,是云计算理念.机制和商业化的具体实现,是整个云计算技术学习中公认的核心和最具有价值内容. 如何从企业级开发实战的角度开始,在实际企业级动手操作中深入浅出并循序渐进的掌握Hadoop是本课程的核心. 云计算学习者的心声: 如何从企业级开发的角度,不断动手实际操作,循序渐进中掌握Hadoop,直到能够直接进行企业级开始,是困惑很多对云计算感兴趣的朋友的核心问题,本课程正是为解决此问题而生,学习者只需要按照一步步的跟着视频动手操作,即可完全无痛掌握Hadoo…
[BigData]关于Hadoop学习笔记第三天(PPT总结)(一)
课程安排 MapReduce原理*** MapReduce执行过程** 数据类型与格式*** Writable接口与序列化机制*** ---------------------------加深拓展---------------------- MapReduce的执行过程源码分析 问题:怎样解决海量数据的计算? MapReduce概述 lMapReduce是一种分布式计算模型,由Google提出,主要用于搜索领域,解决海量数据的计算问题. lMR由两个阶段组成:Map和Reduce,用户只需要…