优化方法总结以及Adam存在的问题(SGD, Momentum, AdaDelta, Adam, AdamW,LazyAdam) 2019年05月29日 01:07:50 糖葫芦君 阅读数 455更多 分类专栏: 算法 深度学习   版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/yinyu19950811/article/details/90476956 文章目录 优化方法概述 1.整体…
Coursera吴恩达<优化深度神经网络>课程笔记(2)-- 优化算法 深度机器学习中的batch的大小 深度机器学习中的batch的大小对学习效果有何影响? 1. Mini-batch gradient descent SGD VS BGD VS MBGD 3. 指数加权平均(Exponentially weighted averages) 这种滑动平均算法称为指数加权平均(exponentially weighted average)其一般形式为: 值决定了指数加权平均的天数,近似表示为:…
参考自: https://zhuanlan.zhihu.com/p/22252270 常见的优化方法有如下几种:SGD,Adagrad,Adadelta,Adam,Adamax,Nadam 1. SGD SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了.即: 缺点: 1. 选择合适的learning rate 较难,对所有参数更新使用同样的learning rate. 2. 容易收敛到局部最优,并且在某些情况下可能被困在鞍点. 2. Momentum…
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 深度学习笔记(三):激活函数和损失函数 深度学习笔记:优化方法总结 深度学习笔记(四):循环神经网络的概念,结构和代码注释 深度学习笔记(五):LSTM 深度学习笔记(六):Encoder-Decoder模型和Attention模型…
SGD: 此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了.现在的SGD一般都指mini-batch gradient descent. SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了.即: 其中,是学习率,是梯度. SGD完全依赖于当前ba…
机器学习的常见优化方法在最近的学习中经常遇到,但是还是不够精通.将自己的学习记录下来,以备不时之需 基础知识: 机器学习几乎所有的算法都要利用损失函数 lossfunction 来检验算法模型的优劣,同时利用损失函数来提升算法模型. 这个提升的过程就叫做优化(Optimizer) 下面这个内容主要就是介绍可以用来优化损失函数的常用方法 常用的优化方法(Optimizer): 1.SGD&BGD&Mini-BGD: SGD(stochastic gradient descent):随机梯度下…
[转载]机器学习优化方法总结:SGD,Momentum,AdaGrad,RMSProp,Adam https://blog.csdn.net/u010089444/article/details/76725843 这篇博客格式不好直接粘贴,就不附原文了. 有几个点可以注意下,原文没有写的很清楚: 优化方法的作用是什么? 可以说,没有优化方法,机器学习模型一般一样可以执行,所以说它并不是必须的.但是优化方法可以动态调整学习率以及影响迭代中参数调整的方向和幅度,可以加速收敛,是对原方法的一种优化.…
Adam作者大革新, 联合Hinton等人推出全新优化方法Lookahead   参与:思源.路.泽南 快来试试 Lookahead 最优化方法啊,调参少.收敛好.速度还快,大牛用了都说好. 最优化方法一直主导着模型的学习过程,没有最优化器模型也就没了灵魂.好的最优化方法一直是 ML 社区在积极探索的,它几乎对任何机器学习任务都会有极大的帮助. 从最开始的批量梯度下降,到后来的随机梯度下降,然后到 Adam 等一大帮基于适应性学习率的方法,最优化器已经走过了很多年.尽管目前 Adam 差不多已经…
上文提到,到目前为止,caffe总共提供了六种优化方法: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: "AdaDelta"), Adaptive Gradient (type: "AdaGrad"), Adam (type: "Adam"), Nesterov’s Accelerated Gradient (type: "Nesterov&qu…
一提到图片,我们就不得不从位图开始说起,位图图像(bitmap),也称为点阵图像或绘制图像,是由称作像素(图片元素)的单个点组成的.这些点可以进行不同的排列和染色以构成一副图片.当放大位图时,可以看见赖以构成整个图像的无数单个方块. 我们常见的图片格式中JPG.PNG.GIF亦属于位图,所以它们的数据结构大致相同,只是每一种图片格式都有不同的压缩算法,不同的扫描方式,但是优化的方法都有一个共同点,都是围绕着每个像素颜色值来下手,那么我们具体该如何进行优化呢?下面我就借助马海祥博客的平台来给大家介…