B树在数据库索引中的应用剖析】的更多相关文章

引言 关于数据库索引,google一个oracle index,mysql index总 有大量的结果,其中很多的使用方法推荐,**索引之n条经典建议云云.笔者认为,较之借鉴,在搞清楚了自己的需求的基础上,对备选方案的原理有个尽可能深 入全面的了解会更有利于我们的选择和决策. 因为某种方案或者技术呈现出某种优势(包括可能没有被介绍到的一定存在的限制),不是定义出来的,而是因为其实现机制决定的.就像LinkedList和 ArrayList分别适用于什么应用不是docment里面定义的,是由其本身…
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/m0_37609579/article/details/100107832 前文讲了二叉树和多路树,二叉树的性能很好,像AVL树.红黑树都是很优秀的结构,那么在数据库索引中,并没有采用二叉树这种结构,这是为什么呢?因为,有性能更好的树来做搜索!目前大部分数据库系统及文件系统都采用B-Tree或其变种B+Tree作为索引结构. 一.B-树和B+…
背景 首先,来谈谈B树.为什么要使用B树?我们需要明白以下两个事实: [事实1] 不同容量的存储器,访问速度差异悬殊.以磁盘和内存为例,访问磁盘的时间大概是ms级的,访问内存的时间大概是ns级的.有个形象的比喻,若一次内存访问需要1秒,则一次外存访问需要1天.所以,现在的存储系统,都是分级组织的.最常用的数据尽可能放在更高层.更小的存储器中,只有在当前层找不到,才向更低层.更大的存储器中寻找.这也就解释了,当处理大规模数据的时候(指无法将数据一次性存入内存),算法的实际运行时间,往往取决于数据在…
B树 每个节点都存储key和data,所有节点组成这棵树,并且叶子节点指针为null. B+树 只有叶子节点存储data,叶子节点包含了这棵树的所有键值,叶子节点不存储指针. 后来,在B+树上增加了顺序访问指针,也就是每个叶子节点增加一个指向相邻叶子节点的指针,这样一棵树成了数据库系统实现索引的首选数据结构. 原因有很多,最主要的是这棵树矮胖,呵呵.一般来说,索引很大,往往以索引文件的形式存储的磁盘上,索引查找时产生磁盘I/O消耗,相对于内存存取,I/O存取的消耗要高几个数量级,所以评价一个数据…
首先要了解磁盘预读机制,大致就是说,从磁盘读取数据的速度比从内存读取数据的速度要慢很多,所以要尽量减少磁盘I/O的操作,尽量增加内存I/O操作,既然这样,我们可以从磁盘提前把需要的数据拿到内存,这样需要这个数据的时候,它就可以直接从内存读取了.那么哪些数据是以后需要的数据呢,内存也是有限的,不能什么乱七八糟的数据都拿来啊.这出现了局部性原理:当一个数据被用到时,其附近的数据也通常会马上被使用.所以比如当你需要从磁盘获取某个数据时,它会同时把相邻的一段数据一起给拿出来放到内存,当再次想获取附近的数…
B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树: ⑴树中每个结点至多有m 棵子树: ⑵若根结点不是叶子结点,则至少有两棵子树: ⑶除根结点之外的所有非终端结点至少有[m/2] 棵子树: ⑷所有的非终端结点中包含以下信息数据: (n,A0,K1,A1,K2,…,Kn,An) 其中:Ki(i=1,2,…,n)为关键码,且Ki<Ki+1,  Ai 为指向子树根结点的指针(i=0,1,…,n),且指针Ai-…
B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:⑴树中每个结点至多有m 棵子树:⑵若根结点不是叶子结点,则至少有两棵子树: ⑶除根结点之外的所有非终端结点至少有[m/2] 棵子树:⑷所有的非终端结点中包含以下信息数据: (n,A0,K1,A1,K2,…,Kn,An)其中:Ki(i=1,2,…,n)为关键码,且Ki<Ki+1,  Ai 为指向子树根结点的指针(i=0,1,…,n),且指针Ai-1 所指…
B-树和B+树的应用:数据搜索和数据库索引  B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树:⑴树中每个结点至多有m 棵子树:⑵若根结点不是叶子结点,则至少有两棵子树: ⑶除根结点之外的所有非终端结点至少有[m/2] 棵子树:⑷所有的非终端结点中包含以下信息数据: (n,A0,K1,A1,K2,…,Kn,An)其中:Ki(i=1,2,…,n)为关键码,且Ki<Ki+1,  Ai 为指向子树根结点的指…
B-树 1 .B-树定义 B-树是一种平衡的多路查找树,它在文件系统中很有用. 定义:一棵m 阶的B-树,或者为空树,或为满足下列特性的m 叉树: ⑴树中每个结点至多有m 棵子树: ⑵若根结点不是叶子结点,则至少有两棵子树: ⑶除根结点之外的所有非终端结点至少有[m/2] 棵子树: ⑷所有的非终端结点中包含以下信息数据: (n,A0,K1,A1,K2,…,Kn,An) 其中:Ki(i=1,2,…,n)为关键码,且Ki<Ki+1,  Ai 为指向子树根结点的指针(i=0,1,…,n),且指针Ai-…
B+树比B树更适合实际应用中操作系统的文件索引和数据库索引 为什么选择B+树作为数据库索引结构?   背景 首先,来谈谈B树.为什么要使用B树?我们需要明白以下两个事实: [事实1]不同容量的存储器,访问速度差异悬殊.以磁盘和内存为例,访问磁盘的时间大概是ms级的,访问内存的时间大概是ns级的.有个形象的比喻,若一次内存访问需要1秒,则一次外存访问需要1天.所以,现在的存储系统,都是分级组织的.最常用的数据尽可能放在更高层.更小的存储器中,只有在当前层找不到,才向更低层.更大的存储器中寻找.这也…
在进一步分析为什么MySQL数据库索引选择使用B+树之前,我相信很多小伙伴对数据结构中的树还是有些许模糊的,因此我们由浅入深一步步探讨树的演进过程,在一步步引出B树以及为什么MySQL数据库索引选择使用B+树! 学过数据结构的一般对最基础的树都有所认识,因此我们就从与我们主题更为相近的二叉查找树开始. 一.二叉查找树 (1)二叉树简介: 二叉查找树也称为有序二叉查找树,满足二叉查找树的一般性质,是指一棵空树具有如下性质: 1.任意节点左子树不为空,则左子树的值均小于根节点的值: 2.任意节点右子…
在分析MySQL数据库索引之前,很多小伙伴对数据结构中的树理解不够深刻.因此我们由浅入深一步步探讨树的演进过程,再一步步引出MySQL数据库索引底层数据结构. 一.二叉树 二叉查找树也称为有序二叉查找树,满足二叉查找树的一般性质,是指一棵空树具有如下性质: 1.任意节点左子树不为空,则左子树的值均小于根节点的值: 2.任意节点右子树不为空,则右子树的值均大于于根节点的值: 3.任意节点的左右子树也分别是二叉查找树: 4.没有键值相等的节点: 局限性:一个二叉查找树是由n个节点随机构成.所以,对于…
B树: B+树 1) B+-tree的磁盘读写代价更低 B+-tree的内部结点并没有指向关键字具体信息的指针.因此其内部结点相对B 树更小.如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多.一次性读入内存中的需要查找的关键字也就越多.相对来说IO读写次数也就降低了. 个盘快.当需要把内部结点读入内存中的时候,B 树就比B+ 树多一次盘块查找时间(在磁盘中就是盘片旋转的时间). 2) B+-tree的查询效率更加稳定 由于非终结点并不是最终指向文件内容的结点,而…
面试时无意间被问到了这个问题:数据库索引的存储结构一般是B+树,为什么不适用红黑树等普通的二叉树? 经过和同学的讨论,得到如下几个情况: 1. 数据库文件是放在硬盘上,每次读取数据库都需要在磁盘上搜索,因此需要考虑磁盘寻道时间,我们都知道磁盘寻道开销是非常大的.同时,索引一般也是非常大的,内存不能放下,因此也会放在磁盘上.(另外,还与局部性原理与磁盘预读有关系). 2. B+树所有的关键字都出现在叶子节点的链表(稠密索引)中,且链表中的关键字是有序的.非叶子节点只起索引作用(稀疏索引). 叶子节…
要使用索引对数据库的数据操作进行优化,那必须明确几个问题:1.什么是索引2.索引的原理3.索引的优缺点4.什么时候需要使用索引,如何使用围绕这几个问题,来探究索引在数据库操作中所起到的作用. 1.数据库索引简介 回忆一下小时候查字典的步骤,索引和字典目录的概念是一致的.字典目录可以让我们不用翻整本字典就找到我们需要的内容页数,然后翻到那一页就可以.索引也是一样,索引是对记录按照多个字段进行排序的一种展现.对表中的某个字段建立索引会创建另一种数据结构,其中保存着字段的值,每个值还包括指向与它相关记…
一.B+树是什么 B+ 树是一种树型数据结构,通常用于数据库和操作系统的文件系统中.B+ 树的特点是能够保持数据稳定有序,其插入与修改操作拥有较稳定的对数时间复杂度.B+ 树元素自底向上插入,这与二叉树恰好相反. B+ 树的创造者Rudolf Bayer没有解释B代表什么.最常见的观点是B代表平衡(balanced),因为所有的叶子节点在树中都在相同的级别上.B也可能代表Bayer,或者是波音(Boeing),因为他曾经工作于波音科学研究实验室 1)B+树的节点 在 B+ 树中的节点通常被表示为…
数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询.更新数据库表中数据.索引的实现通常使用B树及其变种B+树. 在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法.这种数据结构,就是索引. 为表设置索引要付出代价的:一是增加了数据库的存储空间,二是在插入和修改数据时要花费较多的时间(因为索引也要随之变动). 上图展示了一种可能的索引方式.左边是数据表,一共有两列七条记录,最左边的是数据记录的物…
B+树在数据库中的应用 flyfish 2015-7-6 B+树在数据库中的应用重要是实现索引 应用方式一 ID为表的主键,利用主键建立一棵B+树 叶子结点存储记录的地址 应用方式二 ID为表的主键.建立一棵B+树 叶子结点存储了整条记录…
摘录自博客:http://www.cnblogs.com/morvenhuang/archive/2009/03/30/1425534.html 一.引言 对数据库索引的关注从未淡出我的们的讨论,那么数据库索引是什么样的?聚集索引与非聚集索引有什么不同? 二.B-Tree 我们常见的数据库系统,其索引使用的数据结构多是B-Tree或者B+Tree.例如,MsSql使用的是B+Tree,Oracle及Sysbase使用的是B-Tree.所以在最开始,简单地介绍一下B-Tree. B-Tree不同于…
数据库索引,是数据库管理系统中一个排序的数据结构以协助快速查询.更新数据库表中数据.索引的实现通常使用B树及其变种B+树. 在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法.这种数据结构,就是索引. 为表设置索引要付出代价的:一是增加了数据库的存储空间,二是在插入和修改数据时要花费较多的时间(因为索引也要随之变动). 上图展示了一种可能的索引方式.左边是数据表,一共有两列七条记录,最左边的是数据记录的物理…
数据库索引详解 索引 当我们在设计数据库的时候,对表的一些属性有时会加上索引,但索引为什么能提高检索速率呢?是不是用了索引就一定可以提高效率呢?不同索引之间有什么区别呢?搞懂这些问题是灵活运用索引的必备条件.接下来,我们将一 一进行讨论. 一.索引的本质 索引也分为不同的种类,而且也有不同的分类方法,比较常用的是普通索引和聚集索引. 1.普通索引 其实对某字段建立了索引就相当于是对该字段新建立了一个表,这个表里的元素是安照这个字段有序排列.这样有什么好处呢?好处就在于如果我们select的时候要…
本文在个人技术博客不同步发布,详情可用力戳 亦可扫描屏幕右侧二维码关注个人公众号,公众号内有个人联系方式,等你来撩...   前几天下班回到家后正在处理一个白天没解决的bug,厕所突然传来对象的声音:   对象:xx,你有<时间简史>吗?   我:我去!妹子,你这啥癖好啊,我有时间也不会去捡屎啊!   对象:...人家说的是霍金的科普著作<时间简史>,是一本书啦!   我:哦,那我没有...   对象:人家想看诶,你明天帮我去图书馆借一本吧...   我:我明天还要改...   对…
数据库索引数据结构总结 from:https://zhewuzhou.github.io/2018/10/18/Database-Indexes/ 摘要 数据库索引是数据库中最重要的组成部分,而索引的数据结构设计对数据库的性能有重要的影响.本文尝试选取几种典型的索引数据结构,总结分析,以窥数据库索引之全貌. B+Tree B+Tree 是一种树数据结构,是一个n叉排序树,每个节点通常有多个孩子,一棵B+Tree包含根节点.内部节点和叶子节点.根节点可能是一个叶子节点,也可能是一个包含两个或两个以…
前面几篇关于数据库底层磁盘文件读取,数据库索引实现细节进行了深入的研究,但是没有串联起来的讲解为什么数据库索引会采用B树和B+树而不是其他的数据结构,例如平衡二叉树.链表等,因此,本文打算从数据库文件存储以及读取说起,讲解数据库索引的由来. 我们以抛出问题的形式开始讲解: (1)数据库文件存储的方式     数据库文件存储都是以磁盘文件存储在系统中的,这也是数据库能持久化存储数据的原因. (2)从数据库读取数据的原理        从数据库读取数据,先暂且不考虑从缓存中读取数据的情况,那就是从磁…
问题1.数据库为什么要设计索引?索引类似书本目录,用于提升数据库查找速度.问题2.哈希(hash)比树(tree)更快,索引结构为什么要设计成树型?加快查找速度的数据结构,常见的有两类:(1)哈希,例如HashMap,查询/插入/修改/删除的平均时间复杂度都是O(1):(2)树,例如平衡二叉搜索树,查询/插入/修改/删除的平均时间复杂度都是O(lg(n)):可以看到,不管是读,还是写,哈希类型的索引都比树型的索引更快一些,那为什么,索引结构要设计成树型呢?索引设计成树型,和SQL的需求有关.对于…
二叉树(Binary Search Trees) 二叉树是每个结点最多有两个子树的树结构.通常子树被称作“左子树”(Left Subtree)和“右子树”(Right Subtree).二叉树常被用于实现二叉查找树和二叉堆. 二叉树有如下特性: 每个结点都包含一个元素以及 n 个子树,这里 0≤n≤2. 左子树和右子树是有顺序的,次序不能任意颠倒.左子树的值要小于父结点,右子树的值要大于父结点. 光看概念有点枯燥,假设我们现在有这样一组数[35 27 48 12 29 38 55],顺序的插入到…
B树是为磁盘存储而专门设计的一类平衡搜索树,B树的高度仅随着它所包含的节点数按对数增长,不过因为单个节点可以包含多个关键字,所以对数的底数可以比较大,实际应用中一般是50~2000,给个直观的数字,一棵分支因子为1001.高度为2(不包含根节点)的B树,可以存储超过10亿个关键字! 1.从磁盘结构讲起 计算机的机械磁盘,为了摊还机械移动花费的等待时间,磁盘会一次存取多个数据项而不是一个,这样的一次读取的信息单元是page,我们可以用读或写的页数作为磁盘存取总时间的主要近似值,在任何时刻,B树算法…
 -- 查询一个数据库表中的索引及索引列use [RuPengWangDB]GOSELECT  indexname = a.name , tablename = c. name , indexcolumns = d .name , a .indidFROM    sysindexes a JOIN sysindexkeys b ON a .id = b .id  AND a .indid = b.indid        JOIN sysobjects c ON b .id = c .id   …
一 基础知识 二叉树 根节点,第一层的节点 叶子节点,没有子节点的节点. 非叶子节点,有子节点的节点,根节点也是非叶子节点. B树 B树的节点为关键字和相应的数据(索引等) B+树 B+树是B树的一个变形,非叶子节点只保存索引,不保存实际的数据,数据都保存在叶子节点中, B+树的叶子节点为链表,链表放数据,非叶子节点是索引. 二 对比 1.B树和B+树同样适用于高度越低,查询越快. 2.B树查找节点,B+树只需要查询所有节点(索引),B树查询索引和数据.虽然可能第一个就找到,但在极端情况下,需要…
数据库表设计时一对一关系存在的必要性 2017年07月24日 10:01:07 阅读数:694 在表设计过程中,我无意中觉得一对一关系觉得好没道理,直接放到一张表中不就可以了吗?真是说,网上信息什么都有,也可以说与我一样困惑的有好多人.感谢大神在网上的活跃,我知道了一对一关系存在的必要性. 1.首先就是这种关系出现的场景是什么样子,最好可以举个实际中的需求. 这样的场景有很多,比如:就拿最普通的用户信息来说,数据库中有一个表为user,一个表为user_auth.user表主要存放的字段为用户基…