反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信号从输入层通过隐藏层传播到输出层.在输出层,计算误差和损失函数. 反向传播:在反向传播中,首先计算输出层神经元损失函数的梯度,然后计算隐藏层神经元损失函数的梯度.接下来用梯度更新权重. 这两个过程重复迭代直到收敛. 前期准备 首先给网络提供 M 个训练对(X,Y),X 为输入,Y 为期望的输出.输入…
TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlow Playground的左侧提供了不同的数据集来测试神经网络.默认的数据为左上角被框出来的那个.被选中的数据也会显示在最右边的 “OUTPUT”栏下.在这个数据中,可以看到一个二维平面上有红色或者蓝色的点,每一个小点代表了一个样例,而点的颜色代表了样例的标签.因为点的颜色只有两种,所以这是 一个二…
TensorFlow反向传播算法实现 反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信号从输入层通过隐藏层传播到输出层.在输出层,计算误差和损失函数. 反向传播:在反向传播中,首先计算输出层神经元损失函数的梯度,然后计算隐藏层神经元损失函数的梯度.接下来用梯度更新权重. 这两个过程重复迭代直到收敛. 前期准备 首先给网络提供 M 个训练对(X,Y)…
高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使用 TensorFlow 的梯度下降优化器及其变体. 按照损失函数的负梯度成比例地对系数(W 和 b)进行更新.根据训练样本的大小,有三种梯度下降的变体: Vanilla 梯度下降:在 Vanilla 梯度下降(也称作批梯度下降)中,在每个循环中计算整个训练集的损失函数的梯度.该方法可能很慢并且难以…
  第一讲:人工智能概述       第三讲:Tensorflow框架         前向传播: 反向传播: 总的代码: #coding:utf-8 #1.导入模块,生成模拟数据集 import tensorflow as tf import numpy as np #np为科学计算模块 BATCH_SIZE = 8#表示一次喂入NN多少组数据,不能过大,会噎着 seed = 23455 #基于seed产生随机数 rng = np.random.RandomState(seed) #随机数返回…
Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,你可以编译和拟合模型.之后,它可以用于预测.变量声明.占位符甚至会话都由 API 管理. 具体做法 定义模型的类型.Keras 提供了两种类型的模型:序列和模型类 API.Keras 提供各种类型的神经网络层:   在 model.add() 的帮助下将层添加到模型中.依照 Keras 文档描述,Keras 提供全连接层的选项(针对密集连接的神经网络):…
Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明了一句话,“只有一个隐藏层的多层前馈网络足以逼近任何函数,同时还可以保证很高的精度和令人满意的效果.” 本节将展示如何使用多层感知机(MLP)进行函数逼近,具体来说,是预测波士顿的房价.第2章使用回归技术对房价进行预测,现在使用 MLP 完成相同的任务. 准备工作 对于函数逼近,这里的损失函数是 M…
每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出值限定在一个定义的范围内. 如果 xi 是第 j 个输入,Wj 是连接第 j 个输入到神经元的权重,b 是神经元的偏置,神经元的输出(在生物学术语中,神经元的激活)由激活函数决定,并且在数学上表示如下:   这里,g 表示激活函数.激活函数的参数 ΣWjxj​+b 被称为神经元的活动. 这里对给定输…
本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get_started/mnist/beginners提供. 大部分人已经对 MNIST 数据集很熟悉了,它是机器学习的基础,包含手写数字的图像及其标签来说明它是哪个数字. 对于逻辑回归,对输出 y 使用独热(one-hot)编码.因此,有 10 位表示输出,每位的值为 1 或 0,独热意味着对于每个图片…
大多数人了解 Pandas 及其在处理大数据文件方面的实用性.TensorFlow 提供了读取这种文件的方法. 前面章节中,介绍了如何在 TensorFlow 中读取文件,本节将重点介绍如何从 CSV 文件中读取数据并在训练之前对数据进行预处理. 本节将采用哈里森和鲁宾菲尔德于 1978 年收集的波士顿房价数据集(http://lib.stat.cmu.edu/datasets/boston),该数据集包括 506 个样本场景,每个房屋含 14 个特征: CRIM:城镇人均犯罪率 ZN:占地 2…