sklearn包】的更多相关文章

注册了博客园一晃有3个月了,同时接触机器学习也断断续续的算是有1个月了.今天就用机器学习神器sklearn包的相关内容作为我的开篇文章吧. 本文将对sklearn包中的数据集做一个系统介绍,并简单说一下它们的使用. 道行尚浅,如正文描述有误还望小伙伴不吝赐教,不胜感激,即刻进入正文. 首先,一般机器学习的建模步骤是:数据收集 -> 特征工程 -> 模型选择 -> 模型训练 -> 模型评估 -> 超参数调整 -> 模型预测 -> 模型保存 由此可见,拥有大量优质的数…
今天在安装 Python 的 sklearn 包时出现了 Cannot uninstall 'numpy' 和 Cannot uninstall 'scipy' 错误,下面记录了我尝试了很多网上的方法后最终成功的解决方法. 终端执行 pip install scikit-learn 后,出现 Cannot uninstall 'numpy'. It is a distutils installed project and thus we cannot accurately determine w…
网络资源 sklearn包tree模型importance解析…
1首先是sklearn的官网:http://scikit-learn.org/stable/ 在官网网址上可以看到很多的demo,下边这张是一张非常有用的流程图,在这个流程图中,可以根据数据集的特征,选择合适的方法. 2.sklearn使用的小例子 import numpy as np from sklearn import datasets from sklearn.cross_validation import train_test_split from sklearn.neighbors…
转自:https://blog.csdn.net/u010626937/article/details/72896144#commentBox 1.Python的机器学习包sklearn中也包含了感知机学习算法,我们可以直接调用,因为感知机算法属于线性模型,所以从sklearn.linear_model中import下面给出例子. import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import…
python如何查看内置函数的用法及其源码? 在anaconda的安装目录下,有一块会放着我们安装的所有包,在里面可以找到所有的包 找到scikit learn包,进入 这里面又有了多个子包,每个子包就是一个主要的算法或功能块.我们经常使用的一些算法或功能,比如线性模型.集成算法.神经网络.邻近neighbors算法,都是在这里面实现的.我们可以进入这些代码,看看底层到底是如何实现的. 来理一下sklearn中neighbors算法的实现. knn算法原理 neighbors中,又分为按照不同的…
1.make_bolbs() 函数 from sklearn.datasets.samples_generator import make_blobs import numpy as np import matplotlib.pyplot as plt X , y = make_blobs(n_samples=1000 , n_features= 2 ,centers=[[-1,-1],[0,0],[1,1],[2,2]],cluster_std=[0.4,0.3,0.3,0.4],random…
sklearn官方学习资料 https://scikit-learn.org/stable/user_guide.html 1 Supervised learning监督学习 1.1 线性模型 1.2 线性模型和二次判别分析 1.3 核岭回归 1.4 SVM 1.5 随机梯度下降 1.6 最近邻 1.7 高斯过程 1.8 交叉分解cross decomposition 1.9 朴素贝叶斯 1.10 决策树 1.11 集成算法 1.12 多类别算法 1.13 特征选择 1.14 半监督 1.15…
1 首先须要安装Cython.网上下载后进行本地安装 python setup.py install 2 下载Sklearn包,https://pypi.python.org/pypi/scikit-learn/0.14.1 .进行本地安装(使用pip或easy_install总是出错.如can not import murmurhash3_32.终于本地成功安装) 3 安装后可用nosetests -v sklearn来进行測试…
sklearn包对于SVM可输出支持向量,以及其系数和数目: print '支持向量的数目: ', clf.n_support_ print '支持向量的系数: ', clf.dual_coef_ print '支持向量:', clf.support_  处理不平衡数据常用方法:将少数类的数据权值加重 sklearn中的SVM分类问题加入权重可以通过class_weight属性clfs = [svm.SVC(C=1, kernel='linear', decision_function_shap…
相关内容连接: 机器学习:Python中如何使用最小二乘法(以下简称文一) 机器学习:形如抛物线的散点图在python和R中的非线性回归拟合方法(以下简称文二) 有些内容已经在上面两篇博文中提到了,所以就不重复了.这里主要讲的是sklearn包与scipy包中相关函数的区别.并且多项式回归和普通最小二乘法联系比较紧密,所以也放到此处讲了. 1.普通最小二乘法 1)文一中的数据采用sklearn包的函数拟合 from sklearn import linear_model import numpy…
Scikit learn 也简称 sklearn, 是机器学习领域当中最知名的 python 模块之一. Sklearn 包含了很多种机器学习的方式: Classification 分类 Regression 回归 Clustering 非监督分类 Dimensionality reduction 数据降维 Model Selection 模型选择 Preprocessing 数据预处理 我们总能够从这些方法中挑选出一个适合于自己问题的, 然后解决自己的问题. 安装 Scikit-learn (…
一步步教你轻松学朴素贝叶斯深度篇3(白宁超   2018年9月4日14:18:14) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述.然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论.垃圾邮件.个人广告中获取区域倾向等几个方面进行应用,包括创建数据集.数据预处理.词集模型和词袋模型.朴素贝叶斯模…
sklearn.datasets模块主要提供了一些导入.在线下载及本地生成数据集的方法,可以通过dir或help命令查看,我们会发现主要有三种形式:load_<dataset_name>.fetch_<dataset_name>及make_<dataset_name>的方法 ① datasets.load_<dataset_name>:sklearn包自带的小数据集 In [2]: datasets.load_*? datasets.load_boston#…
sklearn.datasets官网:http://scikit-learn.org/stable/datasets/ sklearn.datasets 模块主要提供一些导入.在线下载及本地生成数据集的方法,可以通过 dir 或 help 命令查看,会发现主要有三种形式:load_<dataset_name>.fetch_<dataset_name> 及 make_<dataset_name> 的方法 sklearn 的数据集有好多个种 自带的小数据集(packaged…
# 1. 安装scipy,numpy,sklearn包 import numpy from sklearn.datasets import load_iris # 2. 从sklearn包自带的数据集中读出鸢尾花数据集data print(data.data) # 3.查看data类型,包含哪些数据 data = load_iris() print(data.keys()) # 4.取出鸢尾花特征和鸢尾花类别数据,查看其形状及数据类型 print(data.target_names) print…
1简述问题 使用countVectorizer()将文本向量化时发现,文本中长度唯一的字符串会被自动过滤掉,这对于我在做的情感分析来讲,一些表较重要的表达情感倾向的词汇被过滤掉,比如文本'没用的东西,可把我可把我坑的不轻,越用越觉得这个手机真的废'. 用结巴分词的精确模式分词,然后我用空格连接这些分词得到的句子是: '没用 的 东西 , 可 把 我 可 把 我 坑 的 不轻 , 越用 越 觉得 这个 手机 真的 废' 代码如下: def cut_word(sent): line=re.sub(r…
阅读了Python的sklearn包中随机森林的代码实现,做了一些笔记. sklearn中的随机森林是基于RandomForestClassifier类实现的,它的原型是 class RandomForestClassifier(ForestClassifier) 继承了一个抽象类ForestClassifier,也就是分类树 RandomForestClassifier有若干个参数,下面我们一个个来看: n_estimators 随机森林中树的个数 默认为10 criterion 每一次分裂的…
1 鸢尾花数据集背景 鸢尾花数据集是原则20世纪30年代的经典数据集.它是用统计进行分类的鼻祖. sklearn包不仅囊括很多机器学习的算法,也自带了许多经典的数据集,鸢尾花数据集就是其中之一. 导入的方法很简单,不过我比较好奇它是如何来存储这些数据的,于是我决定去背后看一看 from sklearn.datasets import load_iris data = load_iris() 找到sklearn包的路径,发现包可不少,不过现在扔在一边,以后再来探索,我现在要找到是datasets文…
概要 基于 sklearn 包自带的 iris 数据集,了解一下分类树的各种参数设置以及代表的意义.   iris 数据集介绍 iris 数据集包含 150 个样本,对应数据集的每行数据,每行数据包含每个样本的四个特征(花萼长度.花萼宽度.花瓣长度.花瓣宽度)和样本的类别信息,所以 iris 数据集是一个 150 行 5 列的二维表. iris 数据集总共有三类:Iris Setosa(山鸢尾).Iris Versicolour(杂色鸢尾),以及 Iris Virginica(维吉尼亚鸢尾),每…
机器学习入门 (注:无基础可快速入门,想提高准确率还得多下功夫,文中各名词不做过多解释) Python语言.pandas包.sklearn包   建议在Jupyter环境操作 操作步骤 1.pandas包加载给机器学习训练的表格 依照机器学习领域的习惯,我们把特征叫做X,目标叫做y,通常一列数据最后一列作为目标列 2.映射数据列为整型(Python做决策树需要整型或者实数) 3.拆分训练集.测试集 4.sklearn创建训练模型.测试模型准确率等 5.预测结果导出 算法 1.PCA算法2.LDA…
由于各种原因,现实世界中的许多数据集都包含缺失值,通常把缺失值编码为空白,NaN或其他占位符.但是,此类数据集与scikit-learn估计器不兼容,这是因为scikit-learn的估计器假定数组中的所有值都是数字,并且都存在有价值的含义.如果必须使用不完整数据集,那么处理缺失数据的基本策略是丢弃包含缺失值的整个行和/或列,但是,这是以丢失有价值的数据为代价的(即使数据不完整),更好的策略是估算缺失值,从数据的已知部分推断出缺失值,这就是插补(imputation). 单变量插补法(univa…
1.什么是线性回归? 回归分析(Regression analysis)是一种统计分析方法,研究自变量和因变量之间的定量关系.回归分析不仅包括建立数学模型并估计模型参数,检验数学模型的可信度,也包括利用建立的模型和估计的模型参数进行预测或控制.按照输入输出变量关系的类型,回归分析可以分为线性回归和非线性回归. 线性回归(Linear regression) 假设样本数据集中的输出变量(y)与输入变量(X)存在线性关系,即输出变量是输入变量的线性组合.线性模型是最简单的模型,也是非常重要和应用广泛…
  kmeans聚类相信大家都已经很熟悉了.在Python里我们用kmeans通常调用Sklearn包(当然自己写也很简单).那么在Spark里能不能也直接使用sklean包呢?目前来说直接使用有点困难,不过我看到spark-packages里已经有了,但还没有发布.不过没关系,PySpark里有ml包,除了ml包,还可以使用MLlib,这个在后期会写,也很方便. 首先来看一下Spark自带的例子: from pyspark.mllib.linalg import Vectors from py…
这篇文章主要讲述Python如何安装Numpy.Scipy.Matlotlib.Scikit-learn等库的过程及遇到的问题解决方法.最近安装这个真是一把泪啊,各种不兼容问题和报错,希望文章对你有所帮助吧!你可能遇到的问题包括:        ImportError: No module named sklearn 未安装sklearn包        ImportError: DLL load failed: 找不到指定的模块        ImportError: DLL load fai…
因为最近实习的需要,所以用python里的sklearn包重新写了一次决策树 工具:sklearn,http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy:将dot文件转化为pdf格式(是为了将形成的决策树可视化)graphviz-2.38,下载解压之后将其中的bin文件的目录添加进环境变量 源代码如下: from sklearn.feature_extraction import DictVectorizerimport csvfrom sklearn…
前言:本文的目的是记录sklearn包中GBRT的使用,主要是官网各参数的意义:对于理论部分和实际的使用希望在只是给出出处,希望之后有时间能补充完整 摘要: 1.示例 2.模型主要参数 3.模型主要属性变量 内容: 1.示例>>> import numpy as np>>> from sklearn.metrics import mean_squared_error>>> from sklearn.datasets import make_friedm…
原文地址:http://scikit-learn.org/stable/tutorial/basic/tutorial.html 翻译:Tacey Wong 概要: 该章节,我们将介绍贯穿scikit-learn使用中的"机器学习(Machine Learning)"这个词汇,并给出一些简单的学习示例. 前言 scikit-learn (Python机器学习库) 进行数据挖掘和数据分析的简单而高效的工具 任何人都可使用,可在多种场景/上下文复用 基于NumPy,SciPy和matplo…
xgboost入门非常经典的材料,虽然读起来比较吃力,但是会有很大的帮助: 英文原文链接:https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/ 原文地址:Complete Guide to Parameter Tuning in XGBoost (with codes in Python) 译注:文内提供的代码和运行结果有一定差异,可以从这里下…
多类分类问题本质上可以分解为多个二分类问题,而解决二分类问题的方法有很多.这里我们利用Keras机器学习框架中的ANN(artificial neural network)来解决多分类问题.这里我们采用的例子是著名的UCI Machine Learning Repository中的鸢尾花数据集(iris flower dataset). 1. 编码输出便签 多类分类问题与二类分类问题类似,需要将类别变量(categorical function)的输出标签转化为数值变量.这个问题在二分类的时候直…