折腾了几天,爬了大大小小若干的坑,特记录如下.代码在最后面. 环境: Python3.6.4 + TensorFlow 1.5.1 + Win7 64位 + I5 3570 CPU 方法: 先用MNIST手写数字库对CNN(卷积神经网络)进行训练,准确度达到98%以上时,再准备独家手写数字10个.画图软件编辑的数字10个共计20个,让训练好的CNN进行识别,考察其识别准确度. 调试代码: 坑1:ModuleNotFoundError: No module named 'google' 解决:pi…
这篇文章中,我们将使用CNN构建一个Tensorflow.js模型来分辨手写的数字.首先,我们通过使之“查看”数以千计的数字图片以及他们对应的标识来训练分辨器.然后我们再通过此模型从未“见到”过的测试数据评估这个分辨器的精确度. 一.运行代码 这篇文章的全部代码可以在仓库TensorFlow.js examples中的tfjs-examples/mnist 下找到,你可以通过下面的方式clone下来然后运行这个demo: $ git clone https://github.com/tensor…
#卷积神经网络cnn import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #数据包,如果没有自动下载 number 1 to 10 data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #用测试集来评估神经网络的准确度 def computer_accuracy(v_xs,v_ys): global pre…
深度卷积生成对抗网络(DCGAN) 我们在第3章实现了一个GAN,其生成器和判别器是具有单个隐藏层的简单前馈神经网络.尽管很简单,但GAN的生成器充分训练后得到的手写数字图像的真实性有些还是很具说服力的.即使是那些无法被识别为人类手写数字的字符,也具有许多手写符号的特征,例如可辨认的线条边缘和形状,特别是与用作生成器原始输入的随机噪声相比,更是如此. 想象一下,如果使用更强大的网络架构可以实现什么?本章中的生成器和判别器都将使用卷积神经网络(CNN,或 ConvNet),而不再是简单的双层前馈网…
1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡. B站上有一个关于”海滩2个兄弟卖雪糕“形成纳什均衡的视频,讲的很生动. 不管系统中的双方一开始处于什么样的状态,只要系统中参与竞争的个体都是”理性经济人“,即每个人在考虑其他人的可能动作的基…
1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性,以下面这个一维的卷积为例子: 第一个特性是稀疏连接.可以看到, layer m 上的每一个节点都只与 layer m-1 对应区域的三个节点相连接.这个局部范围也叫感受野.第二个特性是相同颜色的线条代表了相同的权重,即权重共享.这样做有什么好处呢?一方面权重共享可以极大减小参数的数目,学习起来更加有…
     关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.csdn.net/qq_37608890/article/details/79343860).        本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.相关概念 1.MNIST MNIST(Mixed…
1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性,以下面这个一维的卷积为例子: 第一个特性是稀疏连接.可以看到, layer m 上的每一个节点都只与 layer m-1 对应区域的三个节点相连接.这个局部范围也叫感受野.第二个特性是相同颜色的线条代表了相同的权重,即权重共享.这样做有什么好处呢?一方面权重共享可以极大减小参数的数目,学习起来更加有…
打开Python Shell,输入以下代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 获取数据(如果存在就读取,不存在就下载完再读取) mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) # 输入 x = tf.placeholder("float", [None,…
深度卷积生成对抗网络(DCGAN) ---- 生成 MNIST 手写图片 1.基本原理 生成对抗网络(GAN)由2个重要的部分构成: 生成器(Generator):通过机器生成数据(大部分情况下是图像),目的是"骗过"判别器 判别器(Discriminator):判断这张图像是真实的还是机器生成的,目的是找出生成器做的"假数据" 训练过程 固定判别器,让生成器不断生成假数据,给判别器判别,开始生成器很弱,但是随着不断的训练,生成器不断提升,最终骗过判别器.此时判别器…
""" 生成对抗网络(GAN,Generative Adversarial Networks)的基本原理很简单: 假设有两个网络,生成网络G和判别网络D.生成网络G接受一个随机的噪声z并生成图片, 记为G(z):判别网络D的作用是判别一张图片x是否真实,对于输入x,D(x)是x为真实图片的概率. 在训练过程中, 生成器努力让生成的图片更加真实从而使得判别器无法辨别图像的真假, 而D的目标就是尽量把分辨出真实图片和生成网络G产出的图片,这个过程就类似于二人博弈, G和D构成了一…
先放结果 这是通过GAN迭代训练30W次,耗时3小时生成的手写字图片效果,大部分的还是能看出来是数字的. 实现原理 简单说下原理,生成对抗网络需要训练两个任务,一个叫生成器,一个叫判别器,如字面意思,一个负责生成图片,一个负责判别图片,生成器不断生成新的图片,然后判别器去判断哪儿哪儿不行,生成器再不断去改进,不断的像真实的图片靠近. 这就如同一个造假团伙一样,A负责生产,B负责就鉴定,刚开始的时候,两个人都是菜鸟,A随便画了一幅画拿给B看,B说你这不行,然后A再改进,当然需要改进的不止A,随着A…
本文转载自:https://www.leiphone.com/news/201703/Y5vnDSV9uIJIQzQm.html 生成对抗网络(Generative Adversarial Networks,GAN)最早由 Ian Goodfellow 在 2014 年提出,是目前深度学习领域最具潜力的研究成果之一.它的核心思想是:同时训练两个相互协作.同时又相互竞争的深度神经网络(一个称为生成器 Generator,另一个称为判别器 Discriminator)来处理无监督学习的相关问题.在训…
生成对抗网络的概念 上一篇中介绍的VAE自动编码器具备了一定程度的创造特征,能够"无中生有"的由一组随机数向量生成手写字符的图片. 这个"创造能力"我们在模型中分为编码器和解码器两个部分.其能力来源实际上是大量样本经过学习编码后,在数字层面对编码结果进行微调,再解码生成图片的过程.所生成的图片,是对原样本图的某种变形模仿. 今天的要介绍的生成对抗网络(GAN)也具备很类似的功能,所建立的模型,能够生成非常接近样本图片的结果. 相对于VAE,生成对抗网络GAN更接近一…
半监督生成对抗网络 一.SGAN简介 半监督学习(semi-supervised learning)是GAN在实际应用中最有前途的领域之一,与监督学习(数据集中的每个样本有一个标签)和无监督学习(不使用任何标签)不同,半监督学习只为训练数据集的一小部分提供类别标签.通过内化数据中的隐藏结构,半监督学习努力从标注数据点的小子集中归纳,以有效地对从未见过的新样本进行分类,要使半监督学习有效,标签数据和无标签数据必须来自相同的基本分布. 缺少标签数据集是机器学习研究和实际应用中的主要瓶颈之一,尽管无标…
Valse 2017 | 生成对抗网络(GAN)研究年度进展评述 https://www.leiphone.com/news/201704/fcG0rTSZWqgI31eY.html?viewType=weixin 雷锋网按:2017 年 4 月 21-23 日,VALSE(视觉与学习青年学者研讨会)在厦门举行,国内 CV 领域顶级专家学者齐聚一堂,参会的青年学者达 2000 多人.在 VALSE 的「年度进展评述」环节,共有 12 名学者依次上台,对 CV 研究和应用分支领域近年发展做了详细系…
对抗网络是14年Goodfellow Ian在论文Generative Adversarial Nets中提出来的. 原理方面,对抗网络可以简单归纳为一个生成器(generator)和一个判断器(discriminator)之间博弈的过程.整个网络训练的过程中, 两个模块的分工 判断网络,直观来看就是一个简单的神经网络结构,输入就是一副图像,输出就是一个概率值,用于判断真假使用(概率值大于0.5那就是真,小于0.5那就是假) 生成网络,同样也可以看成是一个神经网络模型,输入是一组随机数Z,输出是…
参考:https://github.com/chenyuntc/pytorch-book/tree/v1.0/chapter7-GAN生成动漫头像 GAN解决了非监督学习中的著名问题:给定一批样本,训练一个系统能够生成类似的新样本 生成对抗网络的网络结构如下图所示: 生成器(generator):输入一个随机噪声,生成一张图片 判别器(discriminator):判断输入的图片是真图片还是假图片 训练判别器D时,需要利用生成器G生成的假图片和来自现实世界的真图片:训练生成器时,只需要使用噪声生…
用MXNet实现mnist的生成对抗网络(GAN) 生成式对抗网络(Generative Adversarial Network,简称GAN)由一个生成网络与一个判别网络组成.生成网络从潜在空间(latent space)中随机采样作为输入,其输出结果需要尽量模仿训练集中的真实样本.判别网络的输入则为真实样本或生成网络的输出,其目的是将生成网络的输出从真实样本中尽可能分辨出来.而生成网络则要尽可能地欺骗判别网络.两个网络相互对抗.不断调整参数,最终目的是使判别网络无法判断生成网络的输出结果是否真…
人工神经网络,借鉴生物神经网络工作原理数学模型. 由n个输入特征得出与输入特征几乎相同的n个结果,训练隐藏层得到意想不到信息.信息检索领域,模型训练合理排序模型,输入特征,文档质量.文档点击历史.文档前链数目.文档锚文本信息,为找特征隐藏信息,隐藏层神经元数目设置少于输入特征数目,经大量样本训练能还原原始特征模型,相当用少于输入特征数目信息还原全部特征,压缩,可发现某些特征之间存在隐含相关性,或者有某种特殊关系.让隐藏层神经元数目多余输入特征数目,训练模型可展示特征之间某种细节关联.输出输入一致…
Generative Adversarial Network 是深度学习中非常有趣的一种方法.GAN最早源自Ian Goodfellow的这篇论文.LeCun对GAN给出了极高的评价: “There are many interesting recent development in deep learning…The most important one, in my opinion, is adversarial training (also called GAN for Generativ…
<Generative Adversarial Nets>是 GAN 系列的鼻祖.在这里通过 PyTorch 实现 GAN ,并且用于手写数字生成. 摘要: 我们提出了一个新的框架,通过对抗处理来评估生成模型.其中,我们同时训练两个 model :一个是生成模型 G,用于获取数据分布:另一个是判别模型 D,用来预测样本来自训练数据而不是生成模型 G 的概率.G 的训练过程是最大化 D 犯错的概率.这个框架对应于一个极小极大的二人游戏.在任意函数 G 和 D 的空间中,存在着一个唯一的解,G 恢…
注:本文来自机器之心的PaperWeekly系列:万字综述之生成对抗网络(GAN),如有侵权,请联系删除,谢谢! 前阵子学习 GAN 的过程发现现在的 GAN 综述文章大都是 2016 年 Ian Goodfellow 或者自动化所王飞跃老师那篇.可是在深度学习,GAN领域,其进展都是以月来计算的,感觉那两篇综述有些老了.最近发现有一篇最新的 GAN 综述论文(How Generative Adversarial Networks and Their Variants Work: An Over…
1.GAN的基本原理其实非常简单,这里以生成图片为例进行说明.假设我们有两个网络,G(Generator)和D(Discriminator).正如它的名字所暗示的那样,它们的功能分别是: G是一个生成图片的网络,它接收一个随机的噪声z,通过这个噪声生成图片,记做G(z). D是一个判别网络,判别一张图片是不是“真实的”.它的输入参数是x,x代表一张图片,输出D(x)代表x为真实图片的概率,如果为1,就代表100%是真实的图片,而输出为0,就代表不可能是真实的图片. 在训练过程中,生成网络G的目标…
https://juejin.im/post/5d3fb44e6fb9a06b2e3ccd4e 生成对抗网络(GAN)是生成模型的一种神经网络架构. 生成模型指在现存样本的基础上,使用模型来生成新案例,比如,基于现存的照片集生成一组与其相似却有细微差异的新照片. GAN是使用两个神经网络模型训练而成的一种生成模型.其中一个称为"生成器"或"生成网络"模型,可学习生成新的可用案例.另一个称为"判别器"或"判别网络",可学习判别生…
来源:https://en.wikipedia.org/wiki/Edmond_de_Belamy 五年前,Generative Adversarial Networks(GANs)在深度学习领域掀起了一场革命.这场革命产生了一些重大的技术突破.Ian Goodfellow等人在"Generative Adversarial Networks"中提出了生成对抗网络.学术界和工业界都开始接受并欢迎GAN的到来.GAN的崛起不可避免. 首先,GAN最厉害的地方是它的学习性质是无监督的.GA…
一.简介 在人工智能领域内,GAN是目前最为潮流的技术之一,GAN能够让人工智能具备和人类一样的想象能力.只需要给定计算机一定的数据,它就可以自动联想出相似的数据.我们学习和使用GAN的原因如下: 1.能够用GAN进行无监督学习:深度学习需要大量数据的标注才能够进行监督学习,而使用GAN则不需要使用大量标注的数据,可以直接生成数据进行无监督学习,比如使用GAN进行图像的语义分割,我们甚至根本不需要标注图像,计算机就可以自动对图像进行语义分割,目标检测等等. 2.使用GAN可以进行图像的风格迁移:…
  生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法之一.   GAN 主要包括了两个部分,即生成器 generator 与判别器 discriminator.生成器主要用来学习真实图像分布从而让自身生成的图像更加真实,以骗过判别器.判别器则需要对接收的图片进行真假判别.在整个过程中,生成器努力地让生成的图像更加真实,而判别器则努力地去识别出图像的真假,这个过程相当于一个二人博弈,随着时间的…
基于Jittor框架实现LSGAN图像生成对抗网络 生成对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一.GAN模型由生成器(Generator)和判别器(Discriminator)两个部分组成.在训练过程中,生成器的目标就是尽量生成真实的图片去欺骗判别器.而判别器的目标就是尽量把生成器生成的图片和真实的图片分别开来.这样,生成器和判别器构成了一个动态的"博弈过程".许多相关的研究…
第一个GAN模型-生成手写数字 一.GAN的基础:对抗训练 形式上,生成器和判别器由可微函数表示如神经网络,他们都有自己的代价函数.这两个网络是利用判别器的损失记性反向传播训练.判别器努力使真实样本输入和伪样本输入带来的损失最小化,而生成器努力使它生成的为样本造成的判别器损失最大化. 训练数据集决定了生成器要学习模拟的样本类型,例如,目标是生成猫的逼真图像,我们就会给GAN提供一组猫的图像. 用更专业的术语来说,生成器的目标是生成符合训练数据集数据分布的样本.对计算机来说,图像只是矩阵:灰度图是…