图之强连通--Tarjan算法】的更多相关文章

强连通分量 简介 在阅读下列内容之前,请务必了解图论基础部分. 强连通的定义是:有向图 G 强连通是指,G 中任意两个结点连通. 强连通分量(Strongly Connected Components,SCC)的定义是:极大的强连通子图. 不懂再看看另一个版本的介绍 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected). 如果有向图G的每两个顶点都强连通,称G是一个强连通图. 非强连通图有向图的极大强连通子图,称为强连通分量(SCC). 这里想要…
原文地址:https://blog.csdn.net/qq_16234613/article/details/77431043 一.解释 在有向图G中,如果两个顶点间至少存在一条互相可达路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected components). 求解有向图的强连通分量算法有很多,例如Kosaraju,Gabow和Tarjan算…
tarjan算法 原理: 我们考虑 DFS 搜索树与强连通分量之间的关系. 如果结点 是某个强连通分量在搜索树中遇到的第⼀个结点,那么这个强连通分量的其余结点肯定 是在搜索树中以 为根的⼦树中. 被称为这个强连通分量的根. 反证法:假设有个结点 在该强连通分量中但是不在以 为根的⼦树中,那么 到 的路径中肯 定有⼀条离开⼦树的边.但是这样的边只可能是横叉边或者反祖边,然⽽这两条边都要求指向的结点已 经被访问过了,这就和 是第⼀个访问的结点⽭盾了.得证. 思路: 在 Tarjan 算法中为每个结点…
一些概念 无向图: 连通图:在无向图中,任意两点都直接或间接连通,则称该图为连通图.(或者说:任意两点之间都存在可到达的路径) 连通分量: G的 最大连通子图 称为G的连通分量. 有向图 (ps.区别在与"强") 强连通图: 在有向图中,对于每一对顶点Vi,Vj都存在从Vi到Vj和从Vj到Vi的路径(任意两点之间都存在可到达对方的路径),则称该图为强连通图. 强连通分量: 有向图G的 最大强连通子图 称为G的强连通分量. 求强连通分量+有向图的压缩(缩点) 缩点即讲一个强连通分量中的点…
/** 题目大意: 给你一个无向连通图,问加上一条边后得到的图的最少的割边数; 算法思想: 图的边双连通Tarjan算法+树形DP; 即通过Tarjan算法对边双连通缩图,构成一棵树,然后用树形DP求最长链,连接首尾即可;剩下的连通块即为所求答案; 算法思路: 对图深度优先搜索,定义DFN(u)为u在搜索树中被遍历到的次序号; 定义Low(u)为u或u的子树中能通过非父子边追溯到的最早的节点,即DFN序号最小的节点; 则有: Low(u)=Min { DFN(u), Low(v),(u,v)为树…
引子 果然老师们都只看标签拉题... 2020.8.19新初二的题集中出现了一道题目(现已除名),叫做Running In The Sky. OJ上叫绮丽的天空 发现需要处理环,然后通过一些神奇的渠道了解到有个东西叫缩点. 紧接着搜了一下缩点,发现了 Tarjan 算法. 然后又翻了翻算法竞赛,于是一去不复返-- 一些定义 给定一张有向图.对于图中任意两个节点 \(x, y\),存在从 \(x\) 到 \(y\) 的路径,也存在 \(y\) 到 \(x\) 的路径.则称该有向图为"强连通图&qu…
简介: 割边和割点的定义仅限于无向图中.我们可以通过定义以蛮力方式求解出无向图的所有割点和割边,但这样的求解方式效率低.Tarjan提出了一种快速求解的方式,通过一次DFS就求解出图中所有的割点和割边. 欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 割点与桥(割边)的定义 在无向图中才有割边和割点的定义 割点:无向连通图中,去掉一个顶点及和它相邻的所有边,图中的连通分量数增加,则该顶点称为割点. 桥(割边):无向联通图中,去…
  为了训练小希的方向感,Gardon建立了一座大城堡,里面有N个房间(N<=10000)和M条通道(M<=100000),每个通道都是单向的,就是说若称某通道连通了A房间和B房间,只说明可以通过这个通道由A房间到达B房间,但并不说明通过它可以由B房间到达A房间.Gardon需要请你写个程序确认一下是否任意两个房间都是相互连通的,即:对于任意的i和j,至少存在一条路径可以从房间i到房间j,也存在一条路径可以从房间j到房间i.  Input 输入包含多组数据,输入的第一行有两个数:N和M,接下来…
Tarjan算法 概念区分 有向图 强连通:在有向图\(G\)中,如果两个顶点\(u, v\ (u \neq v)\)间有一条从\(u\)到\(v\)的有向路径,同时还有一条从\(v\)到\(u\)的有向路径,则称\(u, v\)强连通 强连通图:如果有向图\(G\)的任意两个不同的顶点都强连通,则称\(G\)是一个强连通图 强连通分量:有向图\(G\)的极大强连通子图称为图\(G\)的强连通分量 无向图 连通:和强连通类似(只是无向图的任意边都是双向的,如果存在\(u\rightarrow v…
1. 割点与连通度 在无向连通图中,删除一个顶点v及其相连的边后,原图从一个连通分量变成了两个或多个连通分量,则称顶点v为割点,同时也称关节点(Articulation Point).一个没有关节点的连通图称为重连通图(biconnected graph).若在连通图上至少删去k 个顶点才能破坏图的连通性,则称此图的连通度为k. 关节点和重连通图在实际中较多应用.显然,一个表示通信网络的图的连通度越高,其系统越可靠,无论是哪一个站点出现故障或遭到外界破坏,都不影响系统的正常工作:又如,一个航空网…