[PyTorch入门]之迁移学习】的更多相关文章

迁移学习教程 来自这里. 在本教程中,你将学习如何使用迁移学习来训练你的网络.在cs231n notes你可以了解更多关于迁移学习的知识. 在实践中,很少有人从头开始训练整个卷积网络(使用随机初始化),因为拥有足够大小的数据集相对较少.相反,通常在非常大的数据集(例如ImageNet,它包含120万幅.1000个类别的图像)上对ConvNet进行预训练,然后使用ConvNet作为初始化或固定的特征提取器来执行感兴趣的任务. 两个主要的迁移学习的场景如下: Finetuning the conve…
PyTorch 原文: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 参考文章: https://www.cnblogs.com/king-lps/p/8665344.html https://blog.csdn.net/shaopeng568/article/details/95205345 https://blog.csdn.net/yuyangyg/article/details/8001857…
工具函数 dir函数,让我们直到工具箱,以及工具箱中的分隔区有什么东西 help函数,让我们直到每个工具是如何使用的,工具的使用方法 示例:在pycharm的console环境,输入 import torch dir(torch.cuda.is_available()) 即可查看该工具包 help(torch.cuda.is_available()) DataSet DataSet提供一种方式去获取数据及其label DataLoader为网络提供不同数据形式 使用PIL的Image来读取图片:…
本demo从pytorch官方的迁移学习示例修改而来,增加了以下功能: 根据AUC来迭代最优参数: 五折交叉验证: 输出验证集错误分类图片: 输出分类报告并保存AUC结果图片. import os import numpy as np import torch import torch.nn as nn from torch.optim import lr_scheduler import torchvision from torchvision import datasets, models,…
本节内容参照小土堆的pytorch入门视频教程.学习时建议多读源码,通过源码中的注释可以快速弄清楚类或函数的作用以及输入输出类型. Dataset 借用Dataset可以快速访问深度学习需要的数据,例如我们需要访问如下训练数据: 其中,train中存放的是训练数据集,ants和bees既是文件夹名称也是其包含的图片数据的标签,val中存放的是验证数据集. 假如我们希望自己的Dataset类可以实现如下数据访问形式: dataset = MyDataset("root_dir", &qu…
专栏目录: 第一章:PyTorch之简介与下载 PyTorch简介 PyTorch环境搭建 第二章:PyTorch之60分钟入门 PyTorch入门 PyTorch自动微分 PyTorch神经网络 PyTorch图像分类器 PyTorch数据并行处理 第三章:PyTorch之入门强化 数据加载和处理 PyTorch小试牛刀 迁移学习 混合前端的seq2seq模型部署 保存和加载模型 第四章:PyTorch之图像篇 微调基于torchvision 0.3的目标检测模型 微调TorchVision模…
一.介绍 内容 使机器能够"举一反三"的能力 知识点 使用 PyTorch 的数据集套件从本地加载数据的方法 迁移训练好的大型神经网络模型到自己模型中的方法 迁移学习与普通深度学习方法的效果区别 两种迁移学习方法的区别 二.从图片文件中加载训练数据 引入相关包 下载网盘链接:https://pan.baidu.com/s/1OgknV6OUB-27DED6KSZ0iA 提取码:ekc9 import torch import torch.nn as nn import torch.op…
概述 迁移学习可以改变你建立机器学习和深度学习模型的方式 了解如何使用PyTorch进行迁移学习,以及如何将其与使用预训练的模型联系起来 我们将使用真实世界的数据集,并比较使用卷积神经网络(CNNs)构建的模型和使用迁移学习构建的模型的性能 介绍 我去年在一个计算机视觉项目中工作,我们必须建立一个健壮的人脸检测模型. 考虑到我们拥有的数据集的大小,从头构建一个模型是一个挑战.从头构建将是一个耗时又消耗计算资源的方案.由于时间紧迫,我们必须尽快找出解决办法. 这就是迁移学习拯救我们的时候.这是一个…
Pytorch迁移学习实现驾驶场景分类 源代码:https://github.com/Dalaska/scene_clf 1.安装 pytorch 直接用官网上的方法能装上但下载很慢.通过换源安装发现torchvision找不到.还有一个方法是下载.whl然后用pip install安装. pip install .\torch-1.4.0+cu92-cp37-cp37m-win_amd64.whl .\torchvision-0.5.0+cu92-cp37-cp37m-win_amd64.wh…
迁移学习的两个主要场景 微调CNN:使用预训练的网络来初始化自己的网络,而不是随机初始化,然后训练即可 将CNN看成固定的特征提取器:固定前面的层,重写最后的全连接层,只有这个新的层会被训练 下面修改预训练好的resnet18网络在私人数据集上进行训练来分类蚂蚁和蜜蜂 数据集下载 这里使用的数据集包含ants和bees训练图片各约120张,验证图片各75张.由于数据样本非常少,如果从0初始化一个网络进行训练很难有令人满意的结果,这时候迁移学习就派上了用场.数据集下载地址,下载后解压到项目目录 导…