softmax_loss】的更多相关文章

转自:http://blog.csdn.net/shuzfan/article/details/51460895 Loss Function softmax_loss的计算包含2步: (1)计算softmax归一化概率 (2)计算损失 这里以batchsize=1的2分类为例: 设最后一层的输出为[1.2 0.8],减去最大值后为[0 -0.4], 然后计算归一化概率得到[0.5987 0.4013], 假如该图片的label为1,则Loss=-log0.4013=0.9130 可选参数 (1)…
cnn网络中,网络更新一次参数是根据loss反向传播来,这个loss是一个batch_size的图像前向传播得到的loss和除以batch_size大小得到的平均loss. softmax_loss前向传播中有这样一段代码:    loss/get_normalizer(normalization_,valid_count),这就是对loss进行归一化. 如果我有ignore_label,valid_cout就不为-1,没有就为-1.我的prototxt里面是没有的,所以最后我使用的normal…
#include <algorithm> #include <cfloat> #include <vector> #include "caffe/layers/softmax_loss_layer.hpp" #include "caffe/util/math_functions.hpp" namespace caffe { template <typename Dtype> __global__ void Softma…
softmax_loss中的ignore_label是来自于loss layer,而不是softmax_loss的参数…
转自https://blog.csdn.net/shuzfan/article/details/51460895. Loss Function softmax_loss的计算包含2步: (1)计算softmax归一化概率 (2)计算损失 这里以batchsize=1的2分类为例: 设最后一层的输出为[1.2 0.8],减去最大值后为[0 -0.4], 然后计算归一化概率得到[0.5987 0.4013], 假如该图片的label为1,则Loss=-log0.4013=0.9130 可选参数 (1…
1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inputs. ----cs231n 2.what problems to slove? 2.1introduction 神经网络的本质是一个多层的复合函数,图: 表达式为: 上面式中的Wij就是相邻两层神经元之间的权值,它们就是深度学习需要学习的参数,也就相当于直线拟合y=k*x+b中的待求参数k和b.…
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss softmax-loss层和softmax层计算大致是相同的.softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广.Logistic Regression 只能用于二分类,而softmax可以用于多分类. softmax与softm…
VGG-19 和 VGG-16 的 prototxt文件  VGG-19 和 VGG-16 的 prototxt文件 VGG-16:prototxt 地址:https://gist.github.com/ksimonyan/3785162f95cd2d5fee77#file-readme-mdcaffemodel 地址:http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel…
[转:http://blog.csdn.net/buaalei/article/details/46344675] 大家好!我是贾扬清,目前在Google Brain,今天有幸受雷鸣师兄邀请来和大家聊聊Caffe.没有太多准备,所以讲的不好的地方还请大家谅解.我用的ppt基本上和我们在CVPR上要做的tutorial是类似的,所以大家如果需要更多的内容的话,可以去tutorial.caffe.berkeleyvision.org,也欢迎来参加我们的tutorial:)网页上应该还有一些Pytho…
Training LeNet on MNIST with Caffe We will assume that you have Caffe successfully compiled. If not, please refer to the Installation page. In this tutorial, we will assume that your Caffe installation is located at CAFFE_ROOT. Prepare Datasets You w…