Luogu P5349 幂】的更多相关文章

interlinkage: https://www.luogu.org/problemnew/show/P5349 description: solution: 设$g(x)=\sum_{n=0}^{∞}n^xr^n$ $rg(x)=\sum_{n=0}^{∞}n^xr^{n+1}=\sum_{n=1}^{∞}(n-1)^xr^n$ $g(x)=\sum_{n=1}^{∞}n^xr^n(x>0)$(注意$x>0$这个条件,$x=0$的时候这个不符合) $(1-r)g(x)=\sum_{n=1}…
大力数学题,发现自己好久没写多项式水平急速下降,求逆都要写挂233 首先看到关于多项式的等比数列求和,我们容易想到先求出每一项的系数然后最后累加起来即可,即设\(f_i=\sum_{n=0}^{\infty} n^kr^n\),那么最后\(ans=\sum_{i=0}^m a_if_i\) 然后你直接去OEIS就找到了它的生成函数,一波搞定233 好了我们认真开始推式子,\(f_i=\sum_{n=0}^{\infty} n^kr^n\) \(r\cdot f_i=\sum_{n=1}^\inf…
[橙题不会做系列]QAQ 是李老师上课的题目-- 这题最开始想法是打表做.事实证明这样做也可以( 老师用的是位运算-- 这种一步步分解也能想到用递归qwq #include <algorithm> #include <iostream> #include <cstdio> #include <stack> #include <cmath> using namespace std; void qwq(const int n) { stack<…
分析 https://www.cnblogs.com/cjyyb/p/10822490.html 代码 #include<bits/stdc++.h> using namespace std; #define int long long ; const int N = 2e5; ; ; ],a[],b[],fac[],inv[],val,A[],R,r[]; inline ;)res=res*x%mod;x=x*x%mod;p>>=;}return res;} inline voi…
Luogu 1349 广义斐波那契数列(递推,矩阵,快速幂) Description 广义的斐波那契数列是指形如\[A_n=p*a_{n-1}+q*a_{n-2}\]的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. Input 输入包含一行6个整数.依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内. Output 输出包含一行一个整数,即an除以m的余数. Sample Input…
Luogu 3390 [模板]矩阵快速幂 (矩阵乘法,快速幂) Description 给定n*n的矩阵A,求A^k Input 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 Output 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 Sample Input 2 1 1 1 1 1 Sample Output 1 1 1 1 Http Luogu:https://www.luogu.org/prob…
Luogu T7152 细胞(递推,矩阵乘法,快速幂) Description 小 X 在上完生物课后对细胞的分裂产生了浓厚的兴趣.于是他决定做实验并 观察细胞分裂的规律. 他选取了一种特别的细胞,每天每个该细胞可以分裂出 x − 1 个新的细胞. 小 X 决定第 i 天向培养皿中加入 i 个细胞(在实验开始前培养皿中无细胞). 现在他想知道第 n 天培养皿中总共会有多少个细胞. 由于细胞总数可能很多,你只要告诉他总数对 w 取模的值即可. Input 第一行三个正整数 n, x,w Outpu…
题目链接:https://www.luogu.org/problemnew/show/P3390 首先要明白矩阵乘法是什么 对于矩阵A m*p  与  B p*n 的矩阵 得到C m*n 的矩阵 矩阵乘法满足结合律,但不满足交换律(所以可以套快速幂的板子) 进行矩阵乘法时要么重载*号,或者是写一个矩阵相乘的函数 #include<algorithm> #include<iostream> #include<cstring> #include<cstdio>…
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 2 1 1 1 1 1 输出样例#1: 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂 #include <cst…
超短代码 #include<iostream> #include<cstdio> using namespace std; long long b,p,k; long long Pow(long long n,long long m,long long k){//快速幂啊 if(m==1)return n%k; else {long long r=Pow(n,m>>1,k);return (r*r%k)*(m%2?(n%k):1)%k;}//表达式 } int main…
题目描述 加里敦星球的人们特别喜欢喝可乐.因而,他们的敌对星球研发出了一个可乐机器人,并且放在了加里敦星球的1号城市上.这个可乐机器人有三种行为: 停在原地,去下一个相邻的城市,自爆.它每一秒都会随机触发一种行为.现 在给加里敦星球城市图,在第0秒时可乐机器人在1号城市,问经过了t秒,可乐机器人的行为方案数是多少? 输入输出格式 输入格式: 第一行输入两个正整数况N,M,N表示城市个数,M表示道路个数.(1 <= N <=30,0 < M < 100) 接下来M行输入u,v,表示u…
还记得 前段时间学习二进制快速幂有多崩溃 当然这次方法略有不同 居然轻轻松松的 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 ----------------------------------------------------------------------- #include<cstdio> #include<cmath> u…
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 复制 2 1 1 1 1 1 输出样例#1: 复制 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂 ----------…
补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一种运算 因此我们对于矩阵A的p次只需要先算出A^(p/2)即可 这不就是快速幂吗,快速幂的模板看这里 然后我们把其中的整数乘法改成矩阵乘法即可 关于矩阵的其他东西都不会,好吧,看一看概述矩阵 CODE #include<cstdio> #include<cstring> using n…
题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 输入输出样例 输入样例#1: 2 10 9 输出样例#1: 2^10 mod 9=7 快速幂,随手取膜 #include<cstdio> #include<iostream> using namespace std; int b,p,k; #define LL long long LL q_…
大致就是矩阵快速幂吧.. 这个时候会发现这些边权$\le 9$,然后瞬间想到上回一道题:是不是可以建一堆转移矩阵再建一个$lcm(1,2,3,4,5,6,7,8,9)$的矩阵?...后来发现十分的慢qwq也好像不对 于是考虑转化一下:首先把点$u$建成九个点,$P(u,i)$表示$u$点的第$i$个子点(其实就是计算编号用的). 先初始化,把所有u的点依次连上边权为1的边 然后比如有一条$(u,v)=x$的边,我们就把$P(u,x)与P(v,1)$连边(是不是十分精妙) 然后快速幂,搞定! #i…
题目链接 题目描述非常直接,要求你用快速幂解决第一问,exgcd解决第二问,bsgs解决第三问. emmmm于是现学bsgs 第二问让求最小整数解好烦啊…… 假设我们要求得方程$ax+by=c(mod p)$的最小整数解 令$d=gcd(a,b)$ 我们求得一个解$x_0,y_0$使得$ax_0+by_0=d(mod p)$ 然后$x_0*frac{c}{d}$为最小整数解. #include<cstdio> #include<cstdlib> #include<algori…
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请你求出 f(n) mod 1000000007 的值. 输入输出格式 输入格式: ·第 1 行:一个整数 n 输出格式: 第 1 行: f(n) mod 1000000007 的值 输入输出样例 输入样例#1: 5 输出样例#1: 5 输入样例#2: 10 输出样例#2: 55 说明 对于 60%…
这题真是“容易”.呵呵呵. 参考题解:xyz32768 代码 #include<cstdio> #include<map> #include<algorithm> #include<cctype> #define mod 1000000007 using namespace std; map<long long,bool> vis; inline long long read(){ ,f=; char ch=getchar(); while(!i…
题目链接 从n的元素中选零个,选一个,选两个,选三个...选n个的方案数和,其实就是n个元素中取任意多个元素的方案数,那对于每一个元素,都有取或不取两种情况,所以方案数最终为2^n个. #include<cstdio> #include<cctype> #define mod 6662333 long long ans; long long Pow(long long n,long long i){ ) ; ) return n; ); ) return (((ret*ret)%m…
CJOJ 1331 [HNOI2011]数学作业 / Luogu 3216 [HNOI2011]数学作业 / HYSBZ 2326 数学作业(递推,矩阵) Description 小 C 数学成绩优异,于是老师给小 C 留了一道非常难的数学作业题: 给定正整数 N 和 M,要求计算 Concatenate (1 .. N) Mod M 的值,其中 Concatenate (1 ..N)是将所有正整数 1, 2, -, N 顺序连接起来得到的数.例如,N = 13, Concatenate (1…
Luogu 1962 斐波那契数列(矩阵,递推) Description 大家都知道,斐波那契数列是满足如下性质的一个数列: f(1) = 1 f(2) = 1 f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 请你求出 f(n) mod 1000000007 的值. Input 第 1 行:一个整数 n Output 第 1 行: f(n) mod 1000000007 的值 Sample Input 5 Sample Output 5 Http Luogu:htt…
八数码难题 ——!x^n+y^n=z^n 我在此只说明此题的一种用BFS的方法,因为本人也是初学,勉勉强强写了一个单向的BFS,据说最快的是IDA*(然而蒟蒻我不会…) 各位如果想用IDA*的可以看看这位大佬的这篇文章: http://www.cnblogs.com/ZYBGMZL/p/6852733.html 接下来是我的方法,用luogu的跑了最慢是200ms,感觉还行把. 题目描述 在3×3的棋盘上,摆有八个棋子,每个棋子上标有1至8的某一数字.棋盘中留有一个空格,空格用0来表示.空格周围…
矩阵快速幂 定义矩阵A(m*n),B(p*q),A*B有意义当且仅当n=p.即A的列数等于B的行数. 且C=A*B,C(m*q). 例如: 进入正题,由于现在全国卷高考不考矩阵,也没多大了解.因为遇到了斐波那契这题... 注意到: Fn+1=Fn+Fn-1 我们会有: 则: 所以我们只需要想办法求矩阵A的幂,这时候我们当然想要用快速幂. 代码部分: 定义矩阵: struct matrix{ ll a[][]; }; (类比整数的快速幂)预处理: [我们需要一类似于1的矩阵:] 『1 0 0 0…
仍然是学弟出的题目的原题@lher 学弟将题目改成了多组数据,n在ll范围内,所以我就只讲提高版的做法. 链接:https://www.luogu.org/problem/show?pid=2233 题意分析:看题目:) 解题思路:显然对于n为奇数的情况不存在任意路线.接下来我们进行观察数据,显然这题是要递推的.接下来通过暴力打表加手算,我们推出了这个公式: f[i]=4*f[i-1]-2*f[i-2],f[1]=2,f[2]=8,然后构造对应矩阵进行矩阵快速幂即可得到答案.时间效率\( O (…
新科技 Luogu P3711 题意 设$ S_{k,n}$表示$ \displaystyle\sum_{i=0}^n i^k$ 求多项式$\displaystyle\sum_{k=0}^n S_{k,x}a_k$的各项系数 数组$ a$给定,$ n \leq 100000$ 伯努利数 伯努利数$B$是一个数列,满足 $$\sum_{i=0}^n B_i\binom{n+1}{i}=0$$ 可以用它来求自然数幂和 $$ S_{k,n-1}=\sum_{i=0}^{n-1}i^k=\frac{1}…
题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出"b^p mod k=s" s为运算结果 输入输出样例 输入样例#1: 2 10 9 输出样例#1: 2^10 mod 9=7 这道题有各种各样的做法,来整理一下几种思路吧 做法1(来自一本通) 思路 1.本题主要的难点在于数据规模很大(b…
矩阵,一个神奇又令人崩溃的东西,常常用来优化序列递推 在百度百科中,矩阵的定义: 在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵.这一概念由19世纪英国数学家凯利首先提出. 好,很高深对吧.那我们就更加直接地理解一下矩阵的实质:二维数组 好了这个SB都会,就不解释了 同二维数组一样,矩阵是一个'纵横排列的二维数据表格',它一般是一个n*m的二维数组,其中n*m表示它有n行m列 每一位上的数可以用下标i,j来表示,形如这样一个矩阵:…
题目链接:https://www.luogu.org/problemnew/show/P1226 第一次学快速幂,将别人对快速幂原理的解释简要概括一下: 计算a^b时,直接乘的话计算次数为b,而快速幂则只需要log2(b)次,很实用. 快速幂有很多种解释,以下介绍两种: 一. 我们可以将b转换为二进制来看,比如计算2^11,因为(11)10=(1011)2,所以211=21*8+0*4+1*2+1*1=21×8×21×2×21×1. 具体计算可以参考代码: int quickPower(int…
P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开. 输出格式: 输出共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果. 输入输出样例 输入样例#1: 复制 1 1 3 1 2 输出样例#1: 复制 3 说明 [数据范围] 对于30% 的数据,有 0…