Youtube深度学习推荐系统论文】的更多相关文章

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45530.pdf https://zhuanlan.zhihu.com/p/25343518 https://zhuanlan.zhihu.com/p/52169807 https://zhuanlan.zhihu.com/p/52504407 1.问题建模 把推荐问题建模成一个“超大规模多分类”问题.即在时刻,为用户(上下文信息)在视…
最新最全的文章请关注我的微信公众号:数据拾光者. 摘要:本篇主要分析Youtube深度学习推荐系统,借鉴模型框架以及工程中优秀的解决方案从而应用于实际项目.首先讲了下用户.广告主和抖音这一类视频平台三者之间的关系:就是平台将视频资源作为商品免费卖给用户,同时将用户作为商品有偿卖给广告主,仅此而已.平台想获取更高的收益就必须提升广告的转化效率,而前提是吸引用户增加观看视频的时长,这里就涉及到视频推荐的问题.因为Youtube深度学习推荐系统是基于Embedding做的,所以第二部分讲了下Embed…
摘要 卷积网络在特征分层领域是非常强大的视觉模型.我们证明了经过端到端.像素到像素训练的卷积网络超过语义分割中最先进的技术.我们的核心观点是建立"全卷积"网络,输入任意尺寸,经过有效的推理和学习产生相应尺寸的输出.我们定义并指定全卷积网络的空间,解释它们在空间范围内dense prediction任务(预测每个像素所属的类别)和获取与先验模型联系的应用.我们改编当前的分类网络(AlexNet [22] ,the VGG net [34] , and GoogLeNet [35] )到完…
在弄清楚InfoGAN之前,可以先理解一下变分推断目的以及在概率论中的应用与ELBO是什么,以及KL散度 https://blog.csdn.net/qy20115549/article/details/93074519 https://blog.csdn.net/qy20115549/article/details/86644192. 如果理解了变分推断,KL散度,ELBO,对于InfoGAN中的重要方法就可以很容易理解了. 这里首先看一下简单的对数推导为方便对InfoGAN文中的公式的阅读:…
训练方法DCGAN 的训练方法跟GAN 是一样的,分为以下三步: (1)for k steps:训练D 让式子[logD(x) + log(1 - D(G(z)) (G keeps still)]的值达到最大 (2)保持D 不变,训练G 使式子[logD(G(z))]的值达到最大 (3)重复step(1)和step(2)直到G 与D 达到纳什均衡 Alec Radford等人于2016年初提出DCGAN以改善GAN的可训练性.他们认为传统GAN之所以不稳定,一个原因便是判别器D搭载的是初级的多层…
尊重原创,转载请注明:http://blog.csdn.net/tangwei2014 这是继RCNN,fast-RCNN 和 faster-RCNN之后,rbg(Ross Girshick)大神挂名的又一大作,起了一个很娱乐化的名字:YOLO.  虽然目前版本还有一些硬伤,但是解决了目前基于DL检测中一个大痛点,就是速度问题.  其增强版本GPU中能跑45fps,简化版本155fps. 论文下载:http://arxiv.org/abs/1506.02640  代码下载:https://git…
我们大部分人是如何查询和搜集深度学习相关论文的?绝大多数情况是根据关键字在谷歌.百度搜索.想寻找相关论文的复现代码又会去 GitHub 上搜索关键词.浪费了很多时间不说,论文.代码通常也不够完整.怎么办?今天给大家介绍一个非常牛逼的网站,叫做:Papers with Code.有了它,你再不需要从别的地方寻找论文和代码了!可以及时地追踪 CV.NLP 等热门领域的最新进展. Papers with Code 的网址是: https://paperswithcode.com/sota 这个项目叫做…
[源码解析] 深度学习流水线并行Gpipe(1)---流水线基本实现 目录 [源码解析] 深度学习流水线并行Gpipe(1)---流水线基本实现 0x00 摘要 0x01 概述 1.1 什么是GPipe 1.2 挑战 0x02 并行机制 2.1 机制分类与权衡 2.1.1 数据并行 2.1.2 模型并行 2.1.3 流水线并行 2.2 如何使用 0x03 Pytorch 手动指定并行方式 3.1 基础知识 3.2 特点 3.3 基本用法 3.4 将模型并行化应用于现有模块 3.5 通过流水线输入…
Caffe 全称为 Convolutional Architecture for Fast Feature Embedding,是一个被广泛使用的开源深度学习框架(在 TensorFlow 出现之前一直是深度学习领域 GitHub star 最多的项目),目前由伯克利视觉学中心(Berkeley Vision and Learning Center,BVLC)进行维护.Caffe 的创始人是加州大学伯克利的 Ph.D.贾扬清,他同时也是TensorFlow的作者之一,曾工作于 MSRA.NEC…
http://www.cnblogs.com/ysjxw/archive/2011/10/08/2201782.html Comments from Xinwei: 最近的一个课题发展到与深度学习有联系,因此在高老师的建议下,我仔细看了下深度学习的基本概念,这篇综述翻译自http://deeplearning.net,与大家分享,有翻译不妥之处,烦请各位指正. 查看最新论文 Yoshua Bengio, Learning Deep Architectures for AI, Foundation…