感知器算法 C++】的更多相关文章

(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为它导致数据的 过拟合(overfitting),不符合数据真实的模型.如下图的右图. 下面来讲一种非参数学习方法——局部加权回归(LWR).为什么局部加权回归叫做非参数学习方法呢?首先,参数学习方法是这样一种方法:在训练完成所有数据后得到一系列训练参数,然后根据训练参数来预测新样本的值,这时不再依赖…
课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质. 非参数学习方法 线性回归是参数学习方法,有固定数目的参数以用来进行数据拟合的学习型算法算法称为参数学习方法.对于非参数学习方法来讲,其参数的数量随着训练样本的数目m线性增长:换句话来说,就是算法所需要的东西会随着训练集合线性增长.局部加权回归算法是非参数学习方法的一个典型代表. 局部加权回归算法…
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9113681 最近在看Ng的机器学习公开课,Ng的讲法循循善诱,感觉提高了不少.该系列视频共20个,每看完一个视频,我都要记录一些笔记,包括公式的推导,讲解时候的例子等.按照Ng的说法,公式要自己推理一遍才能理解的通透,我觉得自己能够总结出来,发到博客上,也能达到这个效果,希望有兴趣的同学要循序渐进,理解完一个算法再开始学另外一个算法,每个算法总结一遍,虽然看起来很慢,但却真…
写在前面: 参考: 1  <统计学习方法>第二章感知机[感知机的概念.误分类的判断]   http://pan.baidu.com/s/1hrTscza 2   点到面的距离 3   梯度下降 4   NumPy-快速处理数据    属性shape:表示几行几列:   dot(a,b) 计算数组.矩阵的乘积 感知器算法: Python实现: #coding:utf-8 import numpy as np class Perceptron(object): def __init__(self)…
Rosenblatt于1958年发布的感知器算法,算是机器学习鼻祖级别的算法.其算法着眼于最简单的情况,即使用单个神经元.单层网络进行监督学习(目标结果已知),并且输入数据线性可分.我们可以用该算法来解决and 和 or的问题. 在讨论神经元的数学模型时,我们将单个神经元抽象为下图的信号流图形式.输入向量为x,权重向量为w,w0一路为bias,这里不再赘述.     而本文算讲的算法,其解决的实际问题是,在知道输入向量x,和输出向量y的情况下,求解感知器的权重向量w以及bias.在几何上,我们可…
(1)感知器模型 感知器模型包含多个输入节点:X0-Xn,权重矩阵W0-Wn(其中X0和W0代表的偏置因子,一般X0=1,图中X0处应该是Xn)一个输出节点O,激活函数是sign函数. (2)感知器学习规则 输入训练样本X和初始权重向量W,将其进行向量的点乘,然后将点乘求和的结果作用于激活函数sign(),得到预测输出O,根据预测输出值和目标值之间的差距error,来调整初始化权重向量W.如此反复,直到W调整到合适的结果为止. (3)算法的原始形式 (4)Python代码实现 import nu…
给你一堆样本数据(xi,yi),并标上标签[0,1],让你建立模型(分类感知器二元),对于新给的测试数据进行分类. 要将两种数据分开,这是一个分类问题,建立数学模型,(x,y,z),z指示[0,1],那么假设模型是线性的,如下图所示.有一道线ax+b=y 那么左右两边数据实际上并不等量,那么这时最小二乘并不好用,因为它没有考虑到可能性的大小等因素.那么用最小二乘建模的比较粗糙.(并没有用到标签数据……?用到了.)而感知器又比较粗暴简单的分为0.1两种情况.实际上属于0的可能性和属于1的可能性都是…
for batch&supervised binary classfication,g≈f <=> Eout(g)≥0 achieved through Eout(g)≈Ein(g) and Ein(g)≈0 其中Ein是某一个备选函数h在数据D上犯错误的比例,在整个数据集上犯错误的比例为Eout 1.Perceptron Hypothesis Set 假设训数据集市线性可分的,感知机学习是目标就是求得一个能够将训练集正实例点和负实例点完全正确分开的分离超平面, 对于一组数据X={x1…
We can estimate the weight values for our training data using stochastic gradient descent. Stochastic gradient descent requires two parameters: Learning Rate: Used to limit the amount each weight is corrected each time it is updated. Epochs: The numb…
这篇总结继续复习分类问题.本文简单整理了以下内容: (一)线性判别函数与广义线性判别函数 (二)感知器 (三)松弛算法 (四)Ho-Kashyap算法 闲话:本篇是本系列[机器学习基础整理]在timeline上最新的,但实际上还有(七).(八)都发布的比这个早,因为这个系列的博客是之前早就写好的,不过会抽空在后台修改,感觉自己看不出错误(当然因为水平有限肯定还是会有些错误)了之后再发出来.后面还有SVM.聚类.tree-based和boosting,但现在的情况是前八篇结束后,本系列无限期停更-…