似然函数(likelihood function)】的更多相关文章

1. 似然函数基本定义 令 X1,X2,-,Xn 为联合密度函数 f(X1,X2,-,Xn|θ),给定观测值 X1=x1,X2=x2,-,Xn=xn,关于 θ 的似然函数(likelihood function) 定义如下: L(θ)=L(θ|x1,x2,-,xn)=f(x1,x2,-,xn|θ) 似然函数该怎么理解呢: 似然函数不是概率密度函数: 似然函数既可作为 frequentist 也可作为 Bayesian 分析的重要组件: It measures(似然函数是一种度量) the sup…
知乎上关于似然的一个问题:https://www.zhihu.com/question/54082000 概率(密度)表达给定下样本随机向量的可能性,而似然表达了给定样本下参数(相对于另外的参数)为真实值的可能性. http://www.cnblogs.com/zhsuiy/p/4822020.html 常说的概率是指给定参数后,预测即将发生的事件的可能性. 而似然概率正好与这个过程相反,我们关注的量不再是事件的发生概率,而是已知发生了某些事件,我们希望知道参数应该是多少. 最大似然概率,就是在…
似然函数 统计学中,似然函数是一种关于统计模型参数的函数,表示模型参数中的似然性. 给定输出x时,关于参数θ的似然函数L(θ|x)(在数值上)等于给定参数θ后变量X的概率:L(θ|x)=P(X=x|θ). 似然函数在推断统计学(Statistical inference)中扮演重要角色,如在最大似然估计和费雪信息之中的应用等等.“似然性”与“或然性”或“概率”意思相近,都是指某种事件发生的可能性,但是在统计学中,“似然性”和“或然性”或“概率”又有明确的区分.概率用于在已知一些参数的情况下,预测…
From: http://stats.stackexchange.com/questions/31238/what-is-the-reason-that-a-likelihood-function-is-not-a-pdf…
By Yunduan Cui 这是我自己的PRML学习笔记,目前持续更新中. 第二章 Probability Distributions 概率分布 本章介绍了书中要用到的概率分布模型,是之后章节的基础.已知一个有限集合 \(\{x_{1}, x_{2},..., x_{n}\}\), 概率分布是用来建立一个模型:\(p(x)\). 这一问题又称作密度估计( density estimation ). 主要内容 1. Binomial and Multinomial distributions 面…
转自:http://blog.csdn.net/abcjennifer/article/details/8198352 在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明.本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布组成,每个 Gauss…
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类(序)----监督学习与无监督学习 聚类(1)----混合高斯模型 Gaussian Mixture Model 聚类(2)----层次聚类 Hierarchical Clustering 聚类(3)----谱聚类 Spectral Clustering -----------------------…
一.引言 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster 了,而 GMM 则给出这些数据点被 assign 到每个 clu…
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明.本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个"Component",这些 Component 线性加成在一起就组成了 GMM 的概率密度函…
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明. 本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每一个 GMM 由 K 个 Gaussian 分布组成.每一个 Gaussian 称为一个"Component",这些 Component 线性加成在一起就组成了 GMM 的概率…