lpa标签传播算法解说及代码实现】的更多相关文章

package lpa; import java.util.Arrays; import java.util.HashMap; import java.util.Map; public class LPA { public static float sigma = 1; public static int tag_num = 2; public static void main(String[] args) { float[][] data = { {1,1}, {1,2}, {2,1}, {2…
转载请注明出处:http://www.cnblogs.com/bethansy/p/6953625.html LPA算法的思路: 首先每个节点有一个自己特有的标签,节点会选择自己邻居中出现次数最多的标签,如果每个标签出现次数一样多,那么就随机选择一个标签替换自己原始的标签,如此往复,直到每个节点标签不再发生变化,那么持有相同标签的节点就归为一个社区. 算法优点:思路简单,时间复杂度低,适合大型复杂网络. 算法缺点:众所周知,划分结果不稳定,随机性强是这个算法致命的缺点. 体现在:(1)更新顺序.…
0. 社区划分简介 0x1:非重叠社区划分方法 在一个网络里面,每一个样本只能是属于一个社区的,那么这样的问题就称为非重叠社区划分. 在非重叠社区划分算法里面,有很多的方法: 1. 基于模块度优化的社区划分 基本思想是将社区划分问题转换成了模块度函数的优化,而模块度是对社区划分算法结果的一个很重要的衡量标准. 模块度函数在实际求解中无法直接计算得到全局最优解析解(类似深度神经网络对应的复杂高维非线性函数),所以通常是采用近似解法,根据求解方法不同可以分为以下几种方法: . 凝聚方法(down t…
众所周知,机器学习可以大体分为三大类:监督学习.非监督学习和半监督学习.监督学习可以认为是我们有非常多的labeled标注数据来train一个模型,期待这个模型能学习到数据的分布,以期对未来没有见到的样本做预测.那这个性能的源头--训练数据,就显得非常感觉.你必须有足够的训练数据,以覆盖真正现实数据中的样本分布才可以,这样学习到的模型才有意义.那非监督学习就是没有任何的labeled数据,就是平时所说的聚类了,利用他们本身的数据分布,给他们划分类别.而半监督学习,顾名思义就是处于两者之间的,只有…
动手实践标签传播算法 复现论文:Learning with Local and Global Consistency1 lgc 算法可以参考:DecodePaper/notebook/lgc 初始化算法 载入一些必备的库: from IPython.display import set_matplotlib_formats %matplotlib inline #set_matplotlib_formats('svg', 'pdf') import numpy as np import matp…
反向传播算法实战 本文仅仅是反向传播算法的实现,不涉及公式推导,如果对反向传播算法公式推导不熟悉,强烈建议查看另一篇文章神经网络之反向传播算法(BP)公式推导(超详细) 我们将实现一个 4 层的全连接网络,来完成二分类任务.网络输入节点数为 2,隐藏 层的节点数设计为:25.50和25,输出层两个节点,分别表示属于类别 1 的概率和类别 2 的概率,如下图所示.这里并没有采用 Softmax 函数将网络输出概率值之和进行约束, 而是直接利用均方误差函数计算与 One-hot 编码的真实标签之间的…
往期回顾 在上一篇文章中,我们已经掌握了机器学习的基本套路,对模型.目标函数.优化算法这些概念有了一定程度的理解,而且已经会训练单个的感知器或者线性单元了.在这篇文章中,我们将把这些单独的单元按照一定的规则相互连接在一起形成神经网络,从而奇迹般的获得了强大的学习能力.我们还将介绍这种网络的训练算法:反向传播算法.最后,我们依然用代码实现一个神经网络.如果您能坚持到本文的结尾,将会看到我们用自己实现的神经网络去识别手写数字.现在请做好准备,您即将双手触及到深度学习的大门. 神经元 神经元和感知器本…
TensorFlow Playground http://playground.tensorflow.org 帮助更好的理解,游乐场Playground可以实现可视化训练过程的工具 TensorFlow Playground的左侧提供了不同的数据集来测试神经网络.默认的数据为左上角被框出来的那个.被选中的数据也会显示在最右边的 “OUTPUT”栏下.在这个数据中,可以看到一个二维平面上有红色或者蓝色的点,每一个小点代表了一个样例,而点的颜色代表了样例的标签.因为点的颜色只有两种,所以这是 一个二…
最近在研究基于标签传播的社区分类,LabelRank算法基于标签传播和马尔科夫随机游走思路上改装的算法,引用率较高,打算将代码实现,便于加深理解. 这个算法和Label Propagation 算法不同的是计算复杂度较高,对每个标签都确定了概率,但是准确性比Label Propagation算法好. 一.概念 相关概念不再累述,详情见前两篇文章 二.算法思路 首先建立一个标签集合,C={1,2,……n},n是节点的数量.标签概率向量Pi(1*n),Pi(c)=节点i对标签c的概率估计,迭代过程中…
小姐姐带你一起学:如何用Python实现7种机器学习算法(附代码) Python 被称为是最接近 AI 的语言.最近一位名叫Anna-Lena Popkes的小姐姐在GitHub上分享了自己如何使用Python(3.6及以上版本)实现7种机器学习算法的笔记,并附有完整代码.所有这些算法的实现都没有使用其他机器学习库.这份笔记可以帮大家对算法以及其底层结构有个基本的了解,但并不是提供最有效的实现. 小姐姐她是德国波恩大学计算机科学专业的研究生,主要关注机器学习和神经网络. 七种算法包括: 线性回归…