题解 P3978 【[TJOI2015]概率论】】的更多相关文章

\(\color{#0066ff}{ 题目描述 }\) 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢? 判断两棵树是否同构的伪代码如下: \(\color{#0066ff}{输入格式}\) 输入一个正整数n,表示有根树的结点数 \(\color{#0066ff}{输出格式}\) 输出这棵树期望的叶子节点数,要求误差小于1e-9 \(\color{#0066ff}{输入样例}…
题目大意:对于一棵随机生成的$n$个结点的有根二叉树,所有不同构的形态等概率出现(这里同构当且仅当两棵二叉树根相同,并且相同节点的左儿子和右儿子都相同),求叶子节点个数的期望是多少? 题解:令$f_n$表示$n$个节点的二叉树的个数,$g_n$表示这$f_n$棵二叉树的叶子节点个数和. 打(ti)表(jie)发现:$g_n=n f_{n-1}$ 证明:而每棵$n-1$个点的二叉树恰好有$n$个位置可以悬挂一个新的叶子,所以每棵$n-1$个点的二叉树被扩展了$n$次.发现会算重复,但是对于一个有$…
题目大意 随机生成一棵\(n\)(n\leq10^9)个节点的有根二叉树,问叶子结点个数的期望. 题解 subtask 1:\(n\leq100\),70pts 结论:不同的\(n\)个节点的有根二叉树有\(\frac{C_{2\times n}^{n}}{n+1}\)(也就是卡特兰数)个. 设\(f(i)\)表示\(i\)个节点的有根二叉树期望有几个叶子结点. 计算\(f(i)\)时考虑除根以外\(i-1\)个节点哪些放左边,哪些放右边.\(\Theta(n^2)\). subtask 2:\…
看着就是要打表找规律 使用以下代码 for(int i=3;i<=20;i++) { int a1=0,a2=0; for(int j=1;j<i;j++) { for(int k=0;k<i;k++) for(int l=0;l<=j;l++) f[i][j]+=f[k][l]*f[i-k-1][j-l]; a2+=f[i][j],a1+=f[i][j]*j; } } 可以打出表 n 树总数 叶子总数 1 1 1 2 2 2 3 5 6 4 14 20 5 42 70 6 132…
4001: [TJOI2015]概率论 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 262  Solved: 108[Submit][Status][Discuss] Description   Input 输入一个正整数N,代表有根树的结点数   Output 输出这棵树期望的叶子节点数.要求误差小于1e-9   Sample Input 1 Sample Output 1.000000000 HINT 1<=N<=10^9 Source…
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶子个数. 最终要求的东西就是\(\frac{f_n}{g_n}\). 考虑这个玩意怎么转移,先考虑二叉树个数,即怎么求\(f_n\). 每次我们认为新加入的点作为根节点,那么接下来只需要枚举其左右子树大小就行了,所以得到: \[g_n=\sum_{i=0}^{n-1}g_ig_{n-1-i}\] 然…
题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点的二叉树叶子节点的个数,\(f_0 = 0,f_1 = 1\) 那么\(ans = \frac{f_i}{g_i}\) 对于\(g_i\) 考虑有一颗\(n\)个点的二叉树,由于左右字数都是二叉树,枚举左右子树的点数 \[g_n = \sum_{i = 0}^{n - 1}g_ig_{n - i -…
[TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n个点二叉树个数 结论:g(n)=n*f(n-1) 考虑每个n个点的树的叶子,分别拔掉所有k个叶子,给剩下的k个(n-1)个点的树打上标记 那么,g(n)就是n-1个点的所有的树被打的标记之和 一个n-1个点的树,有n个位置可以有叶子,恰好会被打n次标记! 然后,ans(n)=g(n)/f(n),f(…
这道题...好像是第一道我自己切出来的黑题... 先说一句,牛顿二项式蒟蒻并不会,可以说是直接套结论. 求诸位老爷轻喷. 这道题用卡特兰数搞. 卡特兰数这玩意从普及组初赛一路考到省选,十分有用. 如果不清楚这个概念的话可以看一下这里. 卡特兰数是有两种计算方法: 1) 用递推算. 2) 用排列组合. 用它解题的流程一般是先说明所求的问题可以归到第一类中,然后再用第二类来计算具体的值. 像这道题就可以用卡特兰数水过. 我们假设\(f_i\)表示节点数为i的二叉树有多少种. 那么可以发现存在这样的关…
题目描述: Description: Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1.000000000 HINT 1<=N<=10^9 洛谷链接 BZOJ链接 思路: 一眼数学期望(毕竟题目里都已经说了),那期望是什么呢??? 在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一.它反映随机…