UVA 11889 - Benefit 可直接枚举】的更多相关文章

看题传送门 题目大意: 输入两个整数A和C,求最小的整数B,使得lcm(A,B)=C.如果无解,输出NO SOLUTION 思路: A*B=C*gcd(A,B) 所以 B / gcd(A,B) = C / A 如果C / A不是整数,那么就无解. 不然B 一定是C / A 的整数倍.(都是整数嘛) #include<cstdio> int gcd(int a,int b) { return b==0?a:gcd(b,a%b); } int main() { int T; scanf("…
题目链接: 传送门 Benefit Time Limit: 5000MS     Memory Limit: 32768 KB Description Recently Yaghoub is playing a new trick to sell some more. When somebody gives him A Tomans, he who never has appropriate changes, asks for B Tomans such that lowest common m…
题意: lcm(a, b) = c; c是a,b的最小共倍数, 现在给出a, c, 要你求出最小的b. 解题思路:         1. 如果c%a != 0 表示无解. 设b = c/a; 当gcd(a, b)==1时, 表示b就是要求的结果. 如果gcd(a, b) != 1;             那么lcm(a, b)一定小于c. 你想一想为什么会这样, 因为原本a中有一部份与结果b相同. 那么, 说明             a影响了b的值.         2. 例如: a = 1…
题意:给你两个数,a,c,求出 lcm(a,b)==c 时的 b 的最小值 思路:我们知道一个性质 gcd(a,b)*lcm(a,b) = a*b 由此我们可以得到 b = gcd(a,b)*lcm(a,b)/a 那我们可以先用 lcm(a,b)/a 计算出假定的b值 如果 gcd(a.b)==1 那么b的最小值确定 如果 gcd(a,b)!=1 我们就要通过计算来找到 计算方法为 a=a/gcd(a,b) b=b*gcd(a.b) 样例: 4 6 12 2 6 32 1760 7 16 结果:…
UVA 1508 - Equipment 状态压缩 枚举子集 dfs ACM 题目地址:option=com_onlinejudge&Itemid=8&category=457&page=show_problem&problem=4254" target="_blank" style="color:rgb(0,136,204); text-decoration:none">UVA 1508 - Equipment--P…
UVA.12716 GCD XOR (暴力枚举 数论GCD) 题意分析 题意比较简单,求[1,n]范围内的整数队a,b(a<=b)的个数,使得 gcd(a,b) = a XOR b. 前置技能 XOR的性质 GCD 由于题目只给出一个n,我们要求对数,能做的也始终暴力枚举a,b,这样就有n^2的复杂度,由于n很大,根本过不了. 于是我们就想用到其中一些性质,如XOR 与GCD,不妨假设 a xor b = c,并且根据题意还知道, gcd(a,b) = c,也就说明c一定是a的因子,所以在枚举的…
好吧,被大白书上的入门题给卡了.=_=|| 已知LCM(A, B) = C,已知A和C,求最小的B 一开始我想当然地以为B = C / A,后来发现这时候的B不一定满足gcd(A, B) = 1 A要不断地除去gcd(A, B),直到满足gcd(A, B) = 1 B最后就应该乘上A除去的值 #include <cstdio> typedef long long LL; LL gcd(LL a, LL b) { ? a : gcd(b, a%b); } int main() { int T;…
首先对于C不能整除A的状况肯定排除 然后得到B=C/A 然后取G=GCD(A,B) 如果G==1,那么此时B就是解 否则的话,就证明A,B,的最小公倍数肯定不是C,因为其最小公倍数是A*B/G 那么我们就去掉这个公因子,方法是A/G,B*G 即可消去两者公共的倍数,同时还可以保证A*B是一个定值 循环直到G==1为止...是...是..是...挺神奇的... 题意借鉴自https://blog.csdn.net/libin56842/article/details/46442083 https:…
题目链接:uva 1560 - Extended Lights Out 题目大意:给定一个5∗6的矩阵,每一个位置上有一个灯和开关,初始矩阵表示灯的亮暗情况,假设按了这个位置的开关,将会导致周围包含自己位置的灯状态变换.求一个按开关位置,保证全部灯都灭掉. 解题思路: 枚举,枚举第一行的状态,然后递推出后面四行的状态. 高斯消元,对于每一个位置对定变量,这样列出30个方程求解. C++ 枚举 #include <cstdio> #include <cstring> #include…
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2925 题意 n个节点,每个节点都有完全相同的n项服务. 每次可以选择一个节点,破坏该节点和相邻节点的某项服务. 问最多能完全破坏多少服务? 思路 如刘书, 直接枚举状态的子集 注意元素个数为k的集合有C^k_n个子集,那么枚举的时间复杂度为sum{c^k_n * 2^k} = 3^n…