「CodeM」排列】的更多相关文章

传送门 Description 给 \(n\) 个二维点 \((a_i,b_i)\),询问有多少种排列 \(p\)(答案对 \(10^9+7\) 取模)使得执行以下伪代码后留下的点是 \(i\),即最后 \(\text{saved} = i\). saved = p[1] for x from 2 to n if a[p[x]] >= a[saved] and b[p[x]] >= b[saved] saved = p[x] 保证 \(a\) 和 \(b\) 分别为一个排列. Solution…
Content 给定一个 \(1\sim n\) 的一个排列 \(p\),你每次可以选择一个区间 \([l,r]\) 并花费 \(r-l+1\) 的代价将下标在这个区间内的所有数升序排序,求使得排列 \(p\) 从 \(1\sim n\) 按升序排序的最少代价. 数据范围:\(t\) 组数据,\(1\leqslant t,\sum n\leqslant 10^6\). Solution 我们直接来考虑正解. 我们不妨考虑怎样去选择区间才能做到最小代价,然后我们不难想到这样的贪心做法:如果一段区间…
传送门 考虑如果能确定每个鞋子最终交换到的位置,那么答案容易算出 具体地,如果原位置为 $i$ 的鞋子要交换到 $pos[i]$ 那么最终答案就是 $pos$ 的逆序对数量 如果不懂可以先去写 NOIP2013火柴排队   我的题解也有关于这个的证明 考虑怎么确定最优的方案,容易想到每个鞋子都找离它最近的鞋子匹配,这样是对的 证明(参考博客): 设最终相邻的某两对鞋子 $(a,b) (c,d)$,其中$(a,b)$ 表示这一对鞋子初始的位置为 $a,b$,$(c,d)$ 同理,不妨设 $a<c$…
#2509. 「AHOI / HNOI2018」排列   题目描述 给定 nnn 个整数 a1,a2,…,an(0≤ai≤n),以及 nnn 个整数 w1,w2,…,wn.称 a1,a2,…,an 的一个排列 ap[1],ap[2],…,ap[n] 为 a1,a2,…,an 的一个合法排列,当且仅当该排列满足:对于任意的 kkk 和任意的 jjj,如果 j≤kj \le kj≤k,那么 ap[j]a_{p[j]}a​p[j]​​ 不等于 p[k]p[k]p[k].(换句话说就是:对于任意的 kk…
目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞定,最后无奈 \(90pts\) . 然而 \(T2\) 想到很多很奇怪的做法,结果正解在 \(28min\) 之内做出... 结果 \(T3\) 是本人最不擅长的伪期望,直接跳过,啥都没得. 来水一发 \(T1\) 的题解... 题目描述 点这里 考场思路 其实并没有什么十分特别的思路,就是一通乱…
「状压DP」「暴力搜索」排列 题目描述: 题目描述 给一个数字串 s 和正整数 d, 统计 sss 有多少种不同的排列能被 d 整除(可以有前导 0).例如 123434 有 90 种排列能被 2 整除,其中末位为 2 的有 30 种,末位为 4 的有 60 种. 输入格式 输入第一行是一个整数 TTT,表示测试数据的个数,以下每行一组 s 和 d,中间用空格隔开.s 保证只包含数字 0,1,2,3,4,5,6,7,8,9 输出格式 每个数据仅一行,表示能被 d 整除的排列的个数. 输入输出样例…
「CTSC 2011」排列 要求不存在公差为 A 或者公比为 B 的子列,那么实际上可以把该问题转化为求一个图的最优拓朴序. 任意差为 A 或者比为 B 的两个数连一条边. 求一个合法序列的答案可以用树状数组. 接下来如果直接用优先队列计算最小拓朴序就可以得到32分的好成绩. 如上方法复杂度为\(o(nlog(n))\),远远小于给定时限. 尝试引入随机算法. 每个数都定义一个优先级\(rank\). 用爬山求出局部最优解: ​ 每次先随机生成\(rank\)数组,然后随机一个点,试图将该点$r…
「ZJOI2016」解题报告 我大浙的省选题真是超级神仙--这套已经算是比较可做的了. 「ZJOI2016」旅行者 神仙分治题. 对于一个矩形,每次我们从最长边切开,最短边不会超过 \(\sqrt{n\times m}\),所以对于每个点跑一遍最短路就行了. 时间复杂度 \(O(n\sqrt{n}\log n+q\sqrt{n})\) \(Code\ Below:\) #include <bits/stdc++.h> #define id(i,j) (((i)-1)*m+(j)) using…
#2664. 「NOI2013」向量内积 两个 \(d\) 维向量 \(A=[a_1, a_2 ,...,a_d]\) 与 \(B=[b_1 ,b_2 ,...,b_d]\) 的内积为其相对应维度的权值的乘积和,即: \[ (A,B) = \displaystyle \sum_{i=1}^d{a_ib_i} = a_1b_1 + a_2b_2 + \ldots + a_db_d \] 现有 \(n\) 个 \(d\) 维向量 \(x_1, \ldots, x_n\),小喵喵想知道是否存在两个向量…
「UOJ351」新年的叶子 题目描述 有一棵大小为 \(n\) 的树,每次随机将一个叶子染黑,可以重复染,问期望染多少次后树的直径会缩小. \(1 \leq n \leq 5 \times 10^5\) 解题思路 : 首先要利用一个经典的结论,树的所有直径的中心为同一个点/边.不妨给每条边加一个虚拟点,这样整颗树的直径就只会交于同一个点了. 接下来考虑树的直径是由中心的两个儿子的两个深度为 \(maxdep\) 的叶子构成的,所以问题等价于将叶子根据中心的儿子分成若干个集合,对于所有染色方案求染…