题目分析: 对于给出的n,求出斐波那契数列第n项的最后4为数,当n很大的时候,普通的递推会超时,这里介绍用矩阵快速幂解决当递推次数很大时的结果,这里矩阵已经给出,直接计算即可 #include<iostream> #include<stdio.h> using namespace std; ; struct mat{ ][]; }; mat operator * (mat a, mat b){ //重载乘号,同时将数据mod10000 mat ret; ; i < ; i++…
题意:a1=0;a2=1;a3=2; a(n)=a(n-1)+a(n-2)+a(n-3);  求a(n) 思路:矩阵快速幂 #include<cstdio> #include<cstring> #define ll long long #define mod int(1e9+9) struct jz { ll num[][]; jz(){ memset(num, , sizeof(num)); } jz operator*(const jz&p)const { jz ans…
I. Interesting Integers 传送门 应该是叫思维题吧,反正敲一下脑壳才知道自己哪里写错了.要敢于暴力. 这个题的题意就是给你一个数,让你逆推出递推的最开始的两个数(假设一开始的两个数为x和y),而且要求x<=y. 通过找规律可以发现,这个题就是求解a*x+b*y=k这个方程的x和y的值,并且要x和y为最小满足条件的解.可以找规律出一个公式fi[i]*x+(fi[i-1]+fi[i])*y=n.因为不知道n具体是在第几步推出来的,所以for循环跑一遍预处理出来的斐波那契数列(存…
There are less than 60 years left till the 900-th birthday anniversary of a famous Italian mathematician Leonardo Fibonacci. Of course, such important anniversary needs much preparations. Dima is sure that it'll be great to learn to solve the followi…
Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 249    Accepted Submission(s): 140 Problem Description Farmer John likes to play mathematics games with his N cows. Recently, t…
HDU 2604 Queuing (递推+矩阵快速幂) 这位作者讲的不错,可以看看他的 #include <cstdio> #include <iostream> #include <algorithm> #include <cmath> #include <cstring> using namespace std; const int N = 5; int msize, Mod; struct Mat { int mat[N][N]; }; M…
题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真的烦 #include<iostream> #include<string.h> #include<cmath> #include<cstdio> using namespace std; typedef long long ll; <<; ; );…
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 1534    Accepted Submission(s): 435 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a,…
1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可. Input 输入1个数n(1 <…
题目链接 F[1] = a, F[2] = b, F[i] = 2 * F[i-2] + F[i-1] + i ^ 4, (i >= 3) 现在要求F[N] 类似于斐波那契数列的递推式子吧, 但是N最大能到int的最大值, 直接循环推解不了 所以就得用矩阵快速幂咯 现在就看转移矩阵长什么样了 Mi表示要求的矩阵 转移矩阵用A表示 A * Mi = Mi+1 矩阵Mi里面至少得有 F[i-1] F[i-2] i ^ 4 Mi+1就相应的有 F[i] F[i-1] (i+1)^4 (i+1)^4 =…
Happy Necklace Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 1146    Accepted Submission(s): 491 Problem Description Little Q wants to buy a necklace for his girlfriend. Necklaces are single…
https://www.luogu.org/problemnew/show/P1962(题目传送) n的范围很大,显然用普通O(N)的递推求F(n)铁定超时了.这里介绍一种用矩阵快速幂实现的解法: 首先普及一下矩阵乘法: 一个m*q的m行q列的矩阵A*一个q*n的q行n列的矩阵B得到一个m*n的m行n列的矩阵AB,则有: 通俗的讲,就是新矩阵第i行j列的数等于第一个矩阵第i行的q个数分别乘第二个矩阵的第j列的q个数并把它们加起来的和.注意,矩阵乘法满足结合律和分配律,但不满足交换律. 我们可以把…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个环可以取下或放上,cost=1.求最小cost.MOD 200907. 解题思路: 递推公式 题目意思非常无聊,感觉是YY的. 设$dp[i]$为取第i个环时的总cost. $dp[1]=1$,$dp[2]=2$,前两个环取下是没有条件要求的. 从i=3开始,由于条件对最后的环限制最大,所以从最后一…
数    位    D    P    开    long    long 首先第一问是转化. 于是就可以二进制下DP了. 第二问是递推,假设最后$n-1$个01位的填法设为$f[i-1]$(方案包括0),于是有fib数列递推关系(很好推),然后矩阵快速幂即可. 一开始思路有点乱,导致边界初始化屡次出错. WA1:见标题赤字. WA2:初始化写错了... #include<iostream> #include<cstdio> #include<cstring> #inc…
传送门:点我 Little Q wants to buy a necklace for his girlfriend. Necklaces are single strings composed of multiple red and blue beads. Little Q desperately wants to impress his girlfriend, he knows that she will like the necklace only if for every prime l…
题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\)列的上面/下面为右上/右下. 我们可以发现,右上可选的颜色数与左上和右下是否同色有关,右下同理,那就记\(f[i][0/1][0/1]\)表示左上与右下是否同色,左下与右上是否同色. 但是第\(n\)列和第\(1\)列不能同色,最后怎么算答案? 不知道第\(n\)列状态算不了,所以我们还要记第\(…
http://www.lightoj.com/volume_showproblem.php?problem=1244 题意:给出六种积木,不能旋转,翻转,问填充2XN的格子有几种方法.\(N <= 10^9 \) 思路:首先手写出前几项,猜出递推式,如果真有比赛出这种题,又不能上网进工具站查是吧?N比较大显然用矩阵快速幂优化一下 /** @Date : 2016-12-18-22.44 * @Author : Lweleth (SoungEarlf@gmail.com) * @Link : ht…
传送门:Educational Codeforces Round 60 – D   题意: 给定N,M(n <1e18,m <= 100) 一个magic gem可以分裂成M个普通的gem,现在需要N个gem,可以选择一定的magic gem,指定每一个分裂或不分裂,问一共有多少种方案 两种分裂方案不同当且仅当magic gem的数量不同,或者分裂的magic gem的索引不同. 思路: 1.首先从dp的角度出发 设F(i)为最终需要i个gem的方案数,容易得到递推式: (总方案数 = 最右边…
Problem Description Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time.   Now we define that ‘f’ is short for female a…
Covering Bob's school has a big playground, boys and girls always play games here after school. To protect boys and girls from getting hurt when playing happily on the playground, rich boy Bob decided to cover the playground using his carpets. Meanwh…
链接:  https://www.codechef.com/FEB18/problems/BROCLK Broken Clock Problem Code: BROCLK Chef has a clock, but it got broken today — the minute hand on Chef's clock doesn't rotate by the angle 2π/3600 each second, but by a different fixed angle x. The c…
题目链接:hdu2604 这题重要的递推公式,找到公式就很easy了(这道题和hdu1757(题解)类似,只是这道题需要自己推公式) 可以直接找规律,推出递推公式,也有另一种找递推公式的方法:(PS:在别的博客粘过来,暂时还不太理解...) 设f(n)为字符串长度为n时复合条件的字符串个数,以字符串最后一个字符为分界点,当最后一个字符为m时前n-1个字符没有限制,即为f(n-1):当最后一个字符为f时就必须去除最后3个字符是fmf和fff的情况,在考虑最后两个字符为mf和ff的情况,显然不行:最…
题目链接 题目大意:求$1-n$所拼接起来的数$mod\ m$的值. ----------------------------------- 递推式子很好想:$f_i=f_{i-1}*10^{\lg i+1}+i$ 看到数据范围,肯定不能$O(n)$递推.考虑矩阵加速. 转移矩阵为: $\begin{pmatrix}10^k&0&0\\1&1&0\\1&1&1\end{pmatrix}$ 因为$10^k$是不确定的,所以我们要根据范围来分情况作乘法.详见代码…
如果有相应的OJ题目,欢迎同学们提供相应的链接 相关链接 所有模板的快速链接 Matrix模板 poj_2118_Firepersons,my_ac_code 简单的测试 None 代码模板 /* * TIME COMPLEXITY:O(n^3log(t)) * PARAMS: * a The constant array. * b The initial array. * n The length of array. * t The iterator's value. * * MATRIX M…
Queuing Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3032    Accepted Submission(s): 1379 Problem Description Queues and Priority Queues are data structures which are known to most computer…
题目链接:http://poj.org/problem?id=3734 题意:给出n个排成一列的方块,用红.蓝.绿.黄四种颜色给它们染色,求染成红.绿的方块个数同时为偶数的方案数模10007的值. 题解:这是WC2019第二课堂生成函数的题,实际上可以不用生成函数,我们考虑如下状态:a[i]表示前i个中红.绿均为偶的方案数,b[i]表示其中一个为奇数的方案数,c[i]表示都为奇数的方案数.然后可以这样转移:a[i]=2a[i-1]+b[i-1],b[i]=2a[i-1]+2b[i-1]+2c[i…
传送门 签到题.(考试的时候写挂爆0) 令AiA_iAi​表示邻接矩阵的iii次幂. 于是就是求Al+Al+1+...+ArA_l+A_{l+1}+...+A_rAl​+Al+1​+...+Ar​. 然而快速幂200次会挂掉. 因此我们把其变成Al∗(A0+...+Ar−l)A_l*(A_0+...+A_{r-l})Al​∗(A0​+...+Ar−l​) 后面的直接预处理,这样一次快速幂+一次矩阵乘法就行了. 代码…
POJ3420 很有趣的覆盖问题 递归推导如下: f[n] = f[n-1] + 4*f[n-2] + 2 * [ f[n-3] + f[n-5] + f[n-7] +.... ] + 3 *  [ f[n-4] + f[n-6] + f[n-8] +.... ] ; (1) f[n - 2] = f[n-3] + 4*f[n-4] + 2 * [ f[n-5] + f[n-7] + f[n-9] +.... ] + 3 *  [ f[n-6] + f[n-8] + f[n-10] +....…
思路:考虑全部铺满时,前2列的放法.有如下5种情况:(转自http://blog.csdn.net/elbadaernu/article/details/77825979 写的很详细 膜一下)  假设f(n)表示列数为n时的方案数,那么这五种情况合法的方案数相加即f(n).这里n大于2. 第一种的方案数即f(n-1),第二种的方案数即f(n-2). 第三种:接下来有两种方案可以选择,一是用一块毛毯去填补第二列的空缺部分,那么此时接下来填补的方案数为f(n-2),二是用两块毛毯去填补,这样的话第三…
题目链接:https://ac.nowcoder.com/acm/contest/885/B 题意:已知齐次线性式xn=a*xn-1+b*xn-2,已知a,b,x0,x1,求xn,n很大,n<=1010^6. 思路:矩阵快速幂模板题,构造矩阵t: a b 矩阵ans: x1 x0 显然ans1=t×ans,ans1为: x2 x1 那么ansn=t^n*ans,ansn为: xn+ xn 所以用矩阵快速幂计算t^n,n很大,快速幂要用十进制倍增,对每一位的计算不能直接乘,还要用二进制的快速幂,不…