L2范数归一化概念和优势】的更多相关文章

1 归一化处理        归一化是一种数理统计中常用的数据预处理手段,在机器学习中归一化通常将数据向量每个维度的数据映射到(0,1)或(-1,1)之间的区间或者将数据向量的某个范数映射为1,归一化好处有两个:        (1) 消除数据单位的影响:其一可以将有单位的数据转为无单位的标准数据,如成年人的身高150-200cm.成年人体重50-90Kg,身高的单位是厘米而体重的单位是千克,不同维度的数据单位不一样,造成原始数据不能直接代入机器学习中进行处理,所以这些数据经过特定方法统一都映射…
L0.L1与L2范数.核范数 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是"minimizeyour error while regularizing your parameters",也就是在规则化参数的同时最…
一.首先说一下范数的概念: 向量的范数可以简单形象的理解为向量的长度,或者向量到零点的距离,或者相应的两个点之间的距离. 向量的范数定义:向量的范数是一个函数||x||,满足非负性||x|| >= 0,齐次性||cx|| = |c| ||x|| ,三角不等式||x+y|| <= ||x|| + ||y||. 常用的向量的范数:L1范数:  ||x|| 为x向量各个元素绝对值之和.L2范数:  ||x||为x向量各个元素平方和的1/2次方,L2范数又称Euclidean范数或者Frobenius…
L1归一化和L2归一化范数的详解和区别 https://blog.csdn.net/u014381600/article/details/54341317 深度学习——L0.L1及L2范数 https://blog.csdn.net/zchang81/article/details/70208061…
http://blog.csdn.net/zouxy09/article/details/24971995 机器学习中的范数规则化之(一)L0.L1与L2范数 zouxy09@qq.com http://blog.csdn.net/zouxy09 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法…
今天看到一篇讲机器学习范数规则化的文章,讲得特别好,记录学习一下.原博客地址(http://blog.csdn.net/zouxy09). 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是“minimizeyour error…
装载自:https://blog.csdn.net/u012467880/article/details/52852242 今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是“minimizeyour error while r…
相关笔记: 吴恩达机器学习笔记(一) —— 线性回归 吴恩达机器学习笔记(三) —— Regularization正则化 ( 问题遗留: 小可只知道引入正则项能降低参数的取值,但为什么能保证 Σθ2 <=λ ? ) 主要内容: 一.线性回归之普通最小二乘法 二.局部加权线性回归 三.岭回归(L2正则项) 四.lasso回归(L1正则项) 五.前向逐步回归 一.线性回归之普通最小二乘法 1.参数的值:(不带正则项) 2.Python代码: def standRegres(xArr, yArr):…
一.范数的概念 向量范数是定义了向量的类似于长度的性质,满足正定,齐次,三角不等式的关系就称作范数. 一般分为L0.L1.L2与L_infinity范数. 二.范数正则化背景 1. 监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差.最小化误差是为了让我们的模型拟合我们的训练数据,而规则化参数是防止我们的模型过分拟合我们的训练数据. . 因为参数太多,会导致我们的模型复杂度上升…
范数介绍:https://www.zhihu.com/question/20473040?utm_campaign=rss&utm_medium=rss&utm_source=rss&utm_content=title 首先介绍损失函数,它是用来估量你模型的预测值f(x)与真实值Y的不一致程度 主要的几种类型包括:1)0-1损失函数  2)平方损失函数   3)绝对损失函数  4) 对数损失函数 0-1损失函数: 平方损失函数: 绝对损失函数: 对数损失函数: 由此延伸出对应的概念…